import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification import gradio mapper = {"India Today": 0, "NDTV": 1, "The Indian Express": 2, "The Times Of India": 3, "The Hindu": 4} rev_mapper = {k:v for v,k in mapper.items()} source_path = "rg089/bert_newspaper_source" title_path = "rg089/t5-headline-generation" summary_path = "rg089/distilbart-summarization" device = "cuda" if torch.cuda.is_available() else "cpu" source_model = AutoModelForSequenceClassification.from_pretrained(source_path).to(device) source_tokenizer = AutoTokenizer.from_pretrained(source_path) title_model = AutoModelForSeq2SeqLM.from_pretrained(title_path).to(device) title_tokenizer = AutoTokenizer.from_pretrained(title_path) summary_model = AutoModelForSeq2SeqLM.from_pretrained(summary_path).to(device) summary_tokenizer = AutoTokenizer.from_pretrained(summary_path) def generate(model, tokenizer, test_samples, prefix="", max_length=256): model.eval() with torch.no_grad(): if type(test_samples) == str: test_samples = prefix + test_samples else: for i in range(len(test_samples)): test_samples[i] = prefix + test_samples[i] with tokenizer.as_target_tokenizer(): inputs = tokenizer( test_samples, truncation=True, padding="max_length", max_length=max_length, return_tensors="pt") input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) outputs = model.generate(input_ids, attention_mask=attention_mask, num_beams=10, max_length=max_length) #, min_length=50) output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) return output_str[0] def classify(model, tokenizer, content, title): model.eval() with torch.no_grad(): model_inputs = tokenizer(title, content, padding=True, truncation=True, return_tensors="pt").to(device) outputs = model(**model_inputs) logits = outputs.logits selected = logits.argmax(dim=-1).cpu().tolist() answers = [rev_mapper[sel] for sel in selected] return answers[0] def main(content, classify_source=False): output = "" title = generate(title_model, title_tokenizer, content, prefix="headline: ") output += f"Title: {title}\n" if classify_source: source = classify(source_model, source_tokenizer, content, title) output += f"Source: {source}\n\n" else: output += "\n" summary = generate(summary_model, summary_tokenizer, content, prefix="") output += f"Summary: {summary}" return output title = "News Helper: Generate Headlines, Summary and Classify the Newspaper Source!" description = """ The current sources supported for classification are: The Times of India, The Indian Express, NDTV, The Hindu and India Today. """ placeholder = "Enter the content of the article here." iface = gradio.Interface(fn=main, inputs=[gradio.inputs.Textbox(lines=10, placeholder=placeholder, label='Article Content:'), gradio.inputs.Checkbox(default=True, label='Classify the Source:')], outputs="textbox", title=title, description=description) iface.launch()