import torch import gradio as gr import torch import os from PIL import Image from torch import autocast from perpneg_diffusion.perpneg_stable_diffusion.pipeline_perpneg_stable_diffusion import PerpStableDiffusionPipeline has_cuda = torch.cuda.is_available() device = torch.device('cpu' if not has_cuda else 'cuda') print(device) # initialize stable diffusion model pipe = PerpStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", # use_auth_token=True ).to(device) def dummy(images, **kwargs): return images, False pipe.safety_checker = dummy examples = [ [ "an armchair in the shape of an avocado | cushion in the armchair", "1 | -0.3", "145", "7.5" ], [ "an armchair in the shape of an avocado", "1", "145", "7.5" ], [ "a peacock, back view | a peacock, front view", "1 | -3.5", "30", "7.5" ], [ "a peacock, back view", "1", "30", "7.5" ], [ "A boy wearing sunglasses | a pair of sunglasses with white frame", "1 | -0.35", "200", "11" ], [ "A boy wearing sunglasses", "1", "200", "11", ], [ "a photo of an astronaut riding a horse | a jumping horse | a white horse", "1 | -0.3 | -0.1", "1988", "10" ], [ "a photo of an astronaut riding a horse | a jumping horse", "1 | -0.3", "1988", "10" ], [ "a photo of an astronaut riding a horse", "1", "1988", "10" ], ] def predict(prompt, weights, seed, scale=7.5, steps=50): try: with torch.no_grad(): has_cuda = torch.cuda.is_available() with autocast('cpu' if not has_cuda else 'cuda'): if has_cuda: generator = torch.Generator('cuda').manual_seed(int(seed)) else: generator = torch.Generator().manual_seed(int(seed)) image_perpneg = pipe(prompt, guidance_scale=float(scale), generator=generator, num_inference_steps=steps, weights=weights)["images"][0] return image_perpneg except Exception as e: print(e) return None app = gr.Blocks() with app: # gr.Markdown( # "# **

AMLDS Video Tagging

**" # ) gr.Markdown( "# **

Perp-Neg: Iterative Editing and Robust View Generation.

**" ) gr.Markdown( """ ### **

Demo created by Huangjie Zheng and Reza Armandpour

**. """ ) with gr.Row(): with gr.Column(): # with gr.Tab(label="FUll prompt"): gr.Markdown( "### **Provide a list of prompts and their weights separated by | **" ) prompt = gr.Textbox(label="List of prompts:", show_label=True) weights = gr.Textbox( label="List of weights:", show_label=True ) seed = gr.Textbox( label="Seed:", show_label=True ) scale = gr.Textbox( label="Guidance scale:", show_label=True ) image_gen_btn = gr.Button(value="Generate") with gr.Column(): img_output = gr.Image( label="Generated Image", show_label=True, ) gr.Markdown("**Examples:**") gr.Examples( examples, [prompt, weights, seed, scale], [img_output], fn=predict, cache_examples=False, ) image_gen_btn.click( predict, inputs=[prompt, weights, seed, scale], outputs=[img_output], ) gr.Markdown(""" \n This is the repository for using Perp-Neg sampling with Stable Diffusion model, as presented in [Re-imagine the Negative Prompt Algorithm: Transform 2D Diffusion into 3D, alleviate Janus problem and Beyond.](https://Perp-Neg.github.i). """) gr.Markdown( """ \n Demo created by: Huangjie Zheng and Reza Armandpour. """ ) app.launch()