#!pip install -q torch transformers gradio import os import io from transformers import pipeline import gradio as gr get_completion = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") def summarize(input): output = get_completion(input) #takes an input return output[0]['summary_text'] #returns an output as summarized text gr.close_all() #create an interface in Gradio demo = gr.Interface(fn=summarize, #mentioning the function inputs=[gr.Textbox(label="Text to summarize", lines=6)], #input interface Textbox outputs=[gr.Textbox(label="Result", lines=3)], title="Text summarization with distilbart-cnn", description="Summarize any text using the `sshleifer/distilbart-cnn-12-6` model under the hood!" ) demo.launch() #to luanch an app. share=True it creates a global link which can be used to access it without a localhost