import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init as init from torch.nn.modules.batchnorm import _BatchNorm from models.nafnet_utils import Local_Base, LayerNorm2d from models.nafnet import SimpleGate, NAFBlock class ICB(nn.Module): """ Instruction Condition Block (ICB) Paper Section 3.3 """ def __init__(self, feature_dim, text_dim=768): super(ICB, self).__init__() self.fc = nn.Linear(text_dim, feature_dim) self.block = NAFBlock(feature_dim) self.beta = nn.Parameter(torch.zeros((1, feature_dim, 1, 1)), requires_grad=True) self.gamma = nn.Parameter(torch.zeros((1, feature_dim, 1, 1)), requires_grad=True) def forward(self, x, text_embedding): gating_factors = torch.sigmoid(self.fc(text_embedding)) gating_factors = gating_factors.unsqueeze(-1).unsqueeze(-1) f = x * self.gamma + self.beta # 1) learned feature scaling/modulation f = f * gating_factors # 2) (soft) feature routing based on text f = self.block(f) # 3) block feature enhancement return f + x class InstructIR(nn.Module): """ InstructIR model using NAFNet (ECCV 2022) as backbone. The model takes as input an RGB image and a text embedding (encoded instruction). Described in Paper Section 3.3 """ def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[], txtdim=768): super().__init__() self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.encoders = nn.ModuleList() self.decoders = nn.ModuleList() self.middle_blks = nn.ModuleList() self.ups = nn.ModuleList() self.downs = nn.ModuleList() self.enc_cond = nn.ModuleList() self.dec_cond = nn.ModuleList() chan = width for num in enc_blk_nums: self.encoders.append( nn.Sequential( *[NAFBlock(chan) for _ in range(num)] ) ) self.enc_cond.append(ICB(chan, txtdim)) self.downs.append( nn.Conv2d(chan, 2*chan, 2, 2) ) chan = chan * 2 self.middle_blks = nn.Sequential( *[NAFBlock(chan) for _ in range(middle_blk_num)] ) for num in dec_blk_nums: self.ups.append( nn.Sequential( nn.Conv2d(chan, chan * 2, 1, bias=False), nn.PixelShuffle(2) ) ) chan = chan // 2 self.decoders.append( nn.Sequential( *[NAFBlock(chan) for _ in range(num)] ) ) # Add text embedding as modulation self.dec_cond.append(ICB(chan, txtdim)) self.padder_size = 2 ** len(self.encoders) def forward(self, inp, txtembd): B, C, H, W = inp.shape inp = self.check_image_size(inp) x = self.intro(inp) encs = [] for encoder, enc_mod, down in zip(self.encoders, self.enc_cond, self.downs): x = encoder(x) x = enc_mod(x, txtembd) encs.append(x) x = down(x) x = self.middle_blks(x) for decoder, up, enc_skip, dec_mod in zip(self.decoders, self.ups, encs[::-1], self.dec_cond): x = up(x) x = x + enc_skip x = decoder(x) x = dec_mod(x, txtembd) x = self.ending(x) x = x + inp return x[:, :, :H, :W] def check_image_size(self, x): _, _, h, w = x.size() mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h)) return x def create_model(input_channels = 3, width = 32, enc_blks = [2, 2, 4, 8], middle_blk_num = 12, dec_blks = [2, 2, 2, 2], txtdim=768): net = InstructIR(img_channel=input_channels, width=width, middle_blk_num=middle_blk_num, enc_blk_nums=enc_blks, dec_blk_nums=dec_blks, txtdim=txtdim) return net