import re from elasticsearch_dsl import Q, Search, A from typing import List, Optional, Tuple, Dict, Union from dataclasses import dataclass from util import setup_logging, rmSpace from nlp import huqie, query from datetime import datetime from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity import numpy as np from copy import deepcopy def index_name(uid): return f"docgpt_{uid}" class Dealer: def __init__(self, es, emb_mdl): self.qryr = query.EsQueryer(es) self.qryr.flds = [ "title_tks^10", "title_sm_tks^5", "content_ltks^2", "content_sm_ltks"] self.es = es self.emb_mdl = emb_mdl @dataclass class SearchResult: total: int ids: List[str] query_vector: List[float] = None field: Optional[Dict] = None highlight: Optional[Dict] = None aggregation: Union[List, Dict, None] = None keywords: Optional[List[str]] = None group_docs: List[List] = None def _vector(self, txt, sim=0.8, topk=10): return { "field": "q_vec", "k": topk, "similarity": sim, "num_candidates": 1000, "query_vector": self.emb_mdl.encode_queries(txt) } def search(self, req, idxnm, tks_num=3): keywords = [] qst = req.get("question", "") bqry, keywords = self.qryr.question(qst) if req.get("kb_ids"): bqry.filter.append(Q("terms", kb_id=req["kb_ids"])) bqry.filter.append(Q("exists", field="q_tks")) bqry.boost = 0.05 print(bqry) s = Search() pg = int(req.get("page", 1)) - 1 ps = int(req.get("size", 1000)) src = req.get("field", ["docnm_kwd", "content_ltks", "kb_id", "image_id", "doc_id", "q_vec"]) s = s.query(bqry)[pg * ps:(pg + 1) * ps] s = s.highlight("content_ltks") s = s.highlight("title_ltks") if not qst: s = s.sort( {"create_time": {"order": "desc", "unmapped_type": "date"}}) s = s.highlight_options( fragment_size=120, number_of_fragments=5, boundary_scanner_locale="zh-CN", boundary_scanner="SENTENCE", boundary_chars=",./;:\\!(),。?:!……()——、" ) s = s.to_dict() q_vec = [] if req.get("vector"): s["knn"] = self._vector(qst, req.get("similarity", 0.4), ps) s["knn"]["filter"] = bqry.to_dict() del s["highlight"] q_vec = s["knn"]["query_vector"] res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src) print("TOTAL: ", self.es.getTotal(res)) if self.es.getTotal(res) == 0 and "knn" in s: bqry, _ = self.qryr.question(qst, min_match="10%") if req.get("kb_ids"): bqry.filter.append(Q("terms", kb_id=req["kb_ids"])) s["query"] = bqry.to_dict() s["knn"]["filter"] = bqry.to_dict() s["knn"]["similarity"] = 0.7 res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src) kwds = set([]) for k in keywords: kwds.add(k) for kk in huqie.qieqie(k).split(" "): if len(kk) < 2: continue if kk in kwds: continue kwds.add(kk) aggs = self.getAggregation(res, "docnm_kwd") return self.SearchResult( total=self.es.getTotal(res), ids=self.es.getDocIds(res), query_vector=q_vec, aggregation=aggs, highlight=self.getHighlight(res), field=self.getFields(res, ["docnm_kwd", "content_ltks", "kb_id", "image_id", "doc_id", "q_vec"]), keywords=list(kwds) ) def getAggregation(self, res, g): if not "aggregations" in res or "aggs_" + g not in res["aggregations"]: return bkts = res["aggregations"]["aggs_" + g]["buckets"] return [(b["key"], b["doc_count"]) for b in bkts] def getHighlight(self, res): def rmspace(line): eng = set(list("qwertyuioplkjhgfdsazxcvbnm")) r = [] for t in line.split(" "): if not t: continue if len(r) > 0 and len( t) > 0 and r[-1][-1] in eng and t[0] in eng: r.append(" ") r.append(t) r = "".join(r) return r ans = {} for d in res["hits"]["hits"]: hlts = d.get("highlight") if not hlts: continue ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]]) return ans def getFields(self, sres, flds): res = {} if not flds: return {} for d in self.es.getSource(sres): m = {n: d.get(n) for n in flds if d.get(n) is not None} for n, v in m.items(): if isinstance(v, type([])): m[n] = "\t".join([str(vv) for vv in v]) continue if not isinstance(v, type("")): m[n] = str(m[n]) m[n] = rmSpace(m[n]) if m: res[d["id"]] = m return res @staticmethod def trans2floats(txt): return [float(t) for t in txt.split("\t")] def insert_citations(self, ans, top_idx, sres, vfield="q_vec", cfield="content_ltks"): ins_embd = [Dealer.trans2floats( sres.field[sres.ids[i]][vfield]) for i in top_idx] ins_tw = [sres.field[sres.ids[i]][cfield].split(" ") for i in top_idx] s = 0 e = 0 res = "" def citeit(): nonlocal s, e, ans, res if not ins_embd: return embd = self.emb_mdl.encode(ans[s: e]) sim = self.qryr.hybrid_similarity(embd, ins_embd, huqie.qie(ans[s:e]).split(" "), ins_tw) print(ans[s: e], sim) mx = np.max(sim) * 0.99 if mx < 0.55: return cita = list(set([top_idx[i] for i in range(len(ins_embd)) if sim[i] > mx]))[:4] for i in cita: res += f"@?{i}?@" return cita punct = set(";。?!!") if not self.qryr.isChinese(ans): punct.add("?") punct.add(".") while e < len(ans): if e - s < 12 or ans[e] not in punct: e += 1 continue if ans[e] == "." and e + \ 1 < len(ans) and re.match(r"[0-9]", ans[e + 1]): e += 1 continue if ans[e] == "." and e - 2 >= 0 and ans[e - 2] == "\n": e += 1 continue res += ans[s: e] citeit() res += ans[e] e += 1 s = e if s < len(ans): res += ans[s:] citeit() return res def rerank(self, sres, query, tkweight=0.3, vtweight=0.7, vfield="q_vec", cfield="content_ltks"): ins_embd = [ Dealer.trans2floats( sres.field[i]["q_vec"]) for i in sres.ids] if not ins_embd: return [] ins_tw = [sres.field[i][cfield].split(" ") for i in sres.ids] # return CosineSimilarity([sres.query_vector], ins_embd)[0] sim = self.qryr.hybrid_similarity(sres.query_vector, ins_embd, huqie.qie(query).split(" "), ins_tw, tkweight, vtweight) return sim if __name__ == "__main__": from util import es_conn SE = Dealer(es_conn.HuEs("infiniflow")) qs = [ "胡凯", "" ] for q in qs: print(">>>>>>>>>>>>>>>>>>>>", q) print(SE.search( {"question": q, "kb_ids": "64f072a75f3b97c865718c4a"}, "infiniflow_*"))