# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse from collections import defaultdict from api.db import FileType, TaskStatus, ParserType, LLMType from api.db.services.llm_service import LLMBundle from api.db.services.knowledgebase_service import KnowledgebaseService from api.settings import retrievaler from api.utils import get_uuid from rag.nlp import tokenize, search from rag.utils.es_conn import ELASTICSEARCH from ranx import evaluate class benchmark_ndcg10: def __init__(self, kb_id): e, kb = KnowledgebaseService.get_by_id(kb_id) self.similarity_threshold = kb.similarity_threshold self.vector_similarity_weight = kb.vector_similarity_weight self.embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language) def _get_benchmarks(self, query, count=16): req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold} sres = retrievaler.search(req, search.index_name("benchmark"), self.embd_mdl) return sres def _get_retrieval(self, qrels): run = defaultdict(dict) query_list = list(qrels.keys()) for query in query_list: sres = self._get_benchmarks(query) sim, _, _ = retrievaler.rerank(sres, query, 1 - self.vector_similarity_weight, self.vector_similarity_weight) for index, id in enumerate(sres.ids): run[query][id] = sim[index] return run def embedding(self, docs, batch_size=16): vects = [] cnts = [d["content_with_weight"] for d in docs] for i in range(0, len(cnts), batch_size): vts, c = self.embd_mdl.encode(cnts[i: i + batch_size]) vects.extend(vts.tolist()) assert len(docs) == len(vects) for i, d in enumerate(docs): v = vects[i] d["q_%d_vec" % len(v)] = v return docs def __call__(self, file_path): qrels = defaultdict(dict) docs = [] with open(file_path) as f: for line in f: query, text, rel = line.strip('\n').split() d = { "id": get_uuid() } tokenize(d, text) docs.append(d) if len(docs) >= 32: ELASTICSEARCH.bulk(docs, search.index_name("benchmark")) docs = [] qrels[query][d["id"]] = float(rel) docs = self.embedding(docs) ELASTICSEARCH.bulk(docs, search.index_name("benchmark")) run = self._get_retrieval(qrels) return evaluate(qrels, run, "ndcg@10") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-f', '--filepath', default='', help="file path", action='store', required=True) parser.add_argument('-k', '--kb_id', default='', help="kb_id", action='store', required=True) args = parser.parse_args() ex = benchmark_ndcg10(args.kb_id) print(ex(args.filepath))