# Licensed under the MIT License """ Reference: - [LightRag](https://github.com/HKUDS/LightRAG) - [MiniRAG](https://github.com/HKUDS/MiniRAG) """ PROMPTS = {} PROMPTS["minirag_query2kwd"] = """---Role--- You are a helpful assistant tasked with identifying both answer-type and low-level keywords in the user's query. ---Goal--- Given the query, list both answer-type and low-level keywords. answer_type_keywords focus on the type of the answer to the certain query, while low-level keywords focus on specific entities, details, or concrete terms. The answer_type_keywords must be selected from Answer type pool. This pool is in the form of a dictionary, where the key represents the Type you should choose from and the value represents the example samples. ---Instructions--- - Output the keywords in JSON format. - The JSON should have three keys: - "answer_type_keywords" for the types of the answer. In this list, the types with the highest likelihood should be placed at the forefront. No more than 3. - "entities_from_query" for specific entities or details. It must be extracted from the query. ###################### -Examples- ###################### Example 1: Query: "How does international trade influence global economic stability?" Answer type pool: {{ 'PERSONAL LIFE': ['FAMILY TIME', 'HOME MAINTENANCE'], 'STRATEGY': ['MARKETING PLAN', 'BUSINESS EXPANSION'], 'SERVICE FACILITATION': ['ONLINE SUPPORT', 'CUSTOMER SERVICE TRAINING'], 'PERSON': ['JANE DOE', 'JOHN SMITH'], 'FOOD': ['PASTA', 'SUSHI'], 'EMOTION': ['HAPPINESS', 'ANGER'], 'PERSONAL EXPERIENCE': ['TRAVEL ABROAD', 'STUDYING ABROAD'], 'INTERACTION': ['TEAM MEETING', 'NETWORKING EVENT'], 'BEVERAGE': ['COFFEE', 'TEA'], 'PLAN': ['ANNUAL BUDGET', 'PROJECT TIMELINE'], 'GEO': ['NEW YORK CITY', 'SOUTH AFRICA'], 'GEAR': ['CAMPING TENT', 'CYCLING HELMET'], 'EMOJI': ['🎉', '🚀'], 'BEHAVIOR': ['POSITIVE FEEDBACK', 'NEGATIVE CRITICISM'], 'TONE': ['FORMAL', 'INFORMAL'], 'LOCATION': ['DOWNTOWN', 'SUBURBS'] }} ################ Output: {{ "answer_type_keywords": ["STRATEGY","PERSONAL LIFE"], "entities_from_query": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"] }} ############################# Example 2: Query: "When was SpaceX's first rocket launch?" Answer type pool: {{ 'DATE AND TIME': ['2023-10-10 10:00', 'THIS AFTERNOON'], 'ORGANIZATION': ['GLOBAL INITIATIVES CORPORATION', 'LOCAL COMMUNITY CENTER'], 'PERSONAL LIFE': ['DAILY EXERCISE ROUTINE', 'FAMILY VACATION PLANNING'], 'STRATEGY': ['NEW PRODUCT LAUNCH', 'YEAR-END SALES BOOST'], 'SERVICE FACILITATION': ['REMOTE IT SUPPORT', 'ON-SITE TRAINING SESSIONS'], 'PERSON': ['ALEXANDER HAMILTON', 'MARIA CURIE'], 'FOOD': ['GRILLED SALMON', 'VEGETARIAN BURRITO'], 'EMOTION': ['EXCITEMENT', 'DISAPPOINTMENT'], 'PERSONAL EXPERIENCE': ['BIRTHDAY CELEBRATION', 'FIRST MARATHON'], 'INTERACTION': ['OFFICE WATER COOLER CHAT', 'ONLINE FORUM DEBATE'], 'BEVERAGE': ['ICED COFFEE', 'GREEN SMOOTHIE'], 'PLAN': ['WEEKLY MEETING SCHEDULE', 'MONTHLY BUDGET OVERVIEW'], 'GEO': ['MOUNT EVEREST BASE CAMP', 'THE GREAT BARRIER REEF'], 'GEAR': ['PROFESSIONAL CAMERA EQUIPMENT', 'OUTDOOR HIKING GEAR'], 'EMOJI': ['📅', '⏰'], 'BEHAVIOR': ['PUNCTUALITY', 'HONESTY'], 'TONE': ['CONFIDENTIAL', 'SATIRICAL'], 'LOCATION': ['CENTRAL PARK', 'DOWNTOWN LIBRARY'] }} ################ Output: {{ "answer_type_keywords": ["DATE AND TIME", "ORGANIZATION", "PLAN"], "entities_from_query": ["SpaceX", "Rocket launch", "Aerospace", "Power Recovery"] }} ############################# Example 3: Query: "What is the role of education in reducing poverty?" Answer type pool: {{ 'PERSONAL LIFE': ['MANAGING WORK-LIFE BALANCE', 'HOME IMPROVEMENT PROJECTS'], 'STRATEGY': ['MARKETING STRATEGIES FOR Q4', 'EXPANDING INTO NEW MARKETS'], 'SERVICE FACILITATION': ['CUSTOMER SATISFACTION SURVEYS', 'STAFF RETENTION PROGRAMS'], 'PERSON': ['ALBERT EINSTEIN', 'MARIA CALLAS'], 'FOOD': ['PAN-FRIED STEAK', 'POACHED EGGS'], 'EMOTION': ['OVERWHELM', 'CONTENTMENT'], 'PERSONAL EXPERIENCE': ['LIVING ABROAD', 'STARTING A NEW JOB'], 'INTERACTION': ['SOCIAL MEDIA ENGAGEMENT', 'PUBLIC SPEAKING'], 'BEVERAGE': ['CAPPUCCINO', 'MATCHA LATTE'], 'PLAN': ['ANNUAL FITNESS GOALS', 'QUARTERLY BUSINESS REVIEW'], 'GEO': ['THE AMAZON RAINFOREST', 'THE GRAND CANYON'], 'GEAR': ['SURFING ESSENTIALS', 'CYCLING ACCESSORIES'], 'EMOJI': ['💻', '📱'], 'BEHAVIOR': ['TEAMWORK', 'LEADERSHIP'], 'TONE': ['FORMAL MEETING', 'CASUAL CONVERSATION'], 'LOCATION': ['URBAN CITY CENTER', 'RURAL COUNTRYSIDE'] }} ################ Output: {{ "answer_type_keywords": ["STRATEGY", "PERSON"], "entities_from_query": ["School access", "Literacy rates", "Job training", "Income inequality"] }} ############################# Example 4: Query: "Where is the capital of the United States?" Answer type pool: {{ 'ORGANIZATION': ['GREENPEACE', 'RED CROSS'], 'PERSONAL LIFE': ['DAILY WORKOUT', 'HOME COOKING'], 'STRATEGY': ['FINANCIAL INVESTMENT', 'BUSINESS EXPANSION'], 'SERVICE FACILITATION': ['ONLINE SUPPORT', 'CUSTOMER SERVICE TRAINING'], 'PERSON': ['ALBERTA SMITH', 'BENJAMIN JONES'], 'FOOD': ['PASTA CARBONARA', 'SUSHI PLATTER'], 'EMOTION': ['HAPPINESS', 'SADNESS'], 'PERSONAL EXPERIENCE': ['TRAVEL ADVENTURE', 'BOOK CLUB'], 'INTERACTION': ['TEAM BUILDING', 'NETWORKING MEETUP'], 'BEVERAGE': ['LATTE', 'GREEN TEA'], 'PLAN': ['WEIGHT LOSS', 'CAREER DEVELOPMENT'], 'GEO': ['PARIS', 'NEW YORK'], 'GEAR': ['CAMERA', 'HEADPHONES'], 'EMOJI': ['🏢', '🌍'], 'BEHAVIOR': ['POSITIVE THINKING', 'STRESS MANAGEMENT'], 'TONE': ['FRIENDLY', 'PROFESSIONAL'], 'LOCATION': ['DOWNTOWN', 'SUBURBS'] }} ################ Output: {{ "answer_type_keywords": ["LOCATION"], "entities_from_query": ["capital of the United States", "Washington", "New York"] }} ############################# -Real Data- ###################### Query: {query} Answer type pool:{TYPE_POOL} ###################### Output: """ PROMPTS["keywords_extraction"] = """---Role--- You are a helpful assistant tasked with identifying both high-level and low-level keywords in the user's query. ---Goal--- Given the query, list both high-level and low-level keywords. High-level keywords focus on overarching concepts or themes, while low-level keywords focus on specific entities, details, or concrete terms. ---Instructions--- - Output the keywords in JSON format. - The JSON should have two keys: - "high_level_keywords" for overarching concepts or themes. - "low_level_keywords" for specific entities or details. ###################### -Examples- ###################### {examples} ############################# -Real Data- ###################### Query: {query} ###################### The `Output` should be human text, not unicode characters. Keep the same language as `Query`. Output: """ PROMPTS["keywords_extraction_examples"] = [ """Example 1: Query: "How does international trade influence global economic stability?" ################ Output: { "high_level_keywords": ["International trade", "Global economic stability", "Economic impact"], "low_level_keywords": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"] } #############################""", """Example 2: Query: "What are the environmental consequences of deforestation on biodiversity?" ################ Output: { "high_level_keywords": ["Environmental consequences", "Deforestation", "Biodiversity loss"], "low_level_keywords": ["Species extinction", "Habitat destruction", "Carbon emissions", "Rainforest", "Ecosystem"] } #############################""", """Example 3: Query: "What is the role of education in reducing poverty?" ################ Output: { "high_level_keywords": ["Education", "Poverty reduction", "Socioeconomic development"], "low_level_keywords": ["School access", "Literacy rates", "Job training", "Income inequality"] } #############################""", ]