from langchain.vectorstores import FAISS from langchain.embeddings import SentenceTransformerEmbeddings import gradio as gr import reranking #from extract_keywords import init_keyword_extractor, extract_keywords from extract_keywords import extract_keywords2 embeddings = SentenceTransformerEmbeddings(model_name="multi-qa-MiniLM-L6-cos-v1") db = FAISS.load_local('faiss_qa_2023-08-20', embeddings) def search_filter_function(query_keywords): def fn(doc): doc_keywords = extract_keywords2(doc[0].page_content)[0] intersection_keywords = doc_keywords.intersection(query_keywords) if len(query_keywords) == 0: return len(doc_keywords) == 0 else: return len(intersection_keywords) >= len(query_keywords) return fn def main(query): query = query.lower() query_keywords, query = extract_keywords2(query) result_docs = db.similarity_search_with_score(query, k=50) if len(query_keywords) > 0: result_docs = list(filter(search_filter_function(query_keywords), result_docs)) if len(result_docs) == 0: return 'Ответ не найден', 0, '' sentences = [doc[0].page_content for doc in result_docs] score, index = reranking.search(query, sentences) return result_docs[index][0].metadata['answer'], score, result_docs[index][0].page_content demo = gr.Interface(fn=main, inputs="text", outputs=[ gr.Textbox(label="Ответ, который будет показан клиенту"), gr.Textbox(label="Score"), gr.Textbox(label="Вопрос, по которому был найден ответ"), ]) demo.launch()