from pathlib import Path from sentence_transformers.cross_encoder import CrossEncoder from more_itertools import windowed #model = CrossEncoder('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1', max_length=512, device='cpu') model = CrossEncoder('retailcrmservices/crossencoder-mMiniLMv2-L12-H384-v1-ru', max_length=512, device='cpu') def rerank(sentence_combinations): similarity_scores = model.predict(sentence_combinations) scores = [(score_max,idx) for idx,score_max in enumerate(similarity_scores)] sim_scores_argsort = sorted(scores, key=lambda x: x[0], reverse=True) return sim_scores_argsort def search(query, sentences): scores = rerank([[query, s] for s in sentences]) return scores[0]