import io import json import os import sys import argparse import re import tarfile from collections import defaultdict import dataclasses from datetime import datetime from typing import Any, Dict, List, Tuple, Optional import pandas as pd import spacy from nltk.corpus import framenet as fn from nltk.corpus.reader.framenet import FramenetError from spacy.tokens import Token from sociofillmore.crashes.utils import is_a_dutch_text ITALIAN_ACTIVE_AUX = ["avere", "ha", "ho", "hai", "avete", "hanno", "abbiamo"] DUTCH_ACTIVE_AUX = ["heb", "hebben", "heeft"] active_frames_df = pd.read_csv("resources/active_frames_full.csv") ACTIVE_FRAMES = active_frames_df[active_frames_df["active"]]["frame"].tolist() IGNORE_DEP_LABELS = ["punct"] DEEP_FRAMES = [ "Transitive_action", "Causation", "Transition_to_a_state", "Event", "State", ] # SYNTAX_ANALYSIS_CACHE_FILES = { # "femicides/rai": "resources/rai_syntax_analysis_cache.json", # "femicides/rai_main": "resources/rai_main_syntax_analysis_cache.json", # "femicides/olv": "resources/olv_syntax_analysis_cache.json", # "crashes/thecrashes": "resources/thecrashes_syntax_analysis_cache.json", # "migration/pavia": "resources/migration_pavia_syntax_analysis_cache.json" # } SYNTAX_ANALYSIS_CACHE_FILES = { "femicides/rai": "output/femicides/syntax_cache/rai_ALL", "femicides/rai_main": "output/femicides/syntax_cache/rai_main", "femicides/rai_ALL": "output/femicides/syntax_cache/rai_ALL", "femicides/olv": "output/femicides/syntax_cache/olv", "crashes/thecrashes": "output/crashes/syntax_cache/thecrashes", "migration/pavia": "output/migration/syntax_cache/pavia", } DEEP_FRAMES_CACHE_FILE = "resources/deep_frame_cache.json" DEP_LABEL_CACHE_FILE = "resources/dep_labels.txt" POSSIBLE_CONSTRUCTIONS = [ "nonverbal", "verbal:active", "verbal:impersonal", "verbal:reflexive", "verbal:passive", "verbal:unaccusative", "other", ] def load_deep_frames_cache(): if os.path.isfile(DEEP_FRAMES_CACHE_FILE): print("Loading deep frame cache...") with open(DEEP_FRAMES_CACHE_FILE, encoding="utf-8") as f: deep_frames_cache = json.load(f) else: deep_frames_cache = {} return deep_frames_cache # make spacy work with google app engine # (see https://stackoverflow.com/questions/55228492/spacy-on-gae-standard-second-python-exceeds-memory-of-largest-instance) # nlp = spacy.load("it_core_news_md") nlp = None @dataclasses.dataclass class AnnotationSpan: tokens_idx: List[int] tokens_str: List[str] @dataclasses.dataclass class FrameStructure: frame: str deep_frame: str target: Optional[AnnotationSpan] roles: List[Tuple[str, AnnotationSpan]] deep_roles: List[Tuple[str, AnnotationSpan]] def make_syntax_cache(dataset, skip_fn=None): print(f"make_syntax_cache({dataset})") if dataset == "femicides/rai": corpus_tarball = "output/femicides/lome/lome_0shot/multilabel_rai_blocks" corpus = "rai" spacy_model = "it_core_news_md" elif dataset == "femicides/rai_main": corpus_tarball = "output/femicides/lome/lome_0shot/multilabel_rai_main_blocks" corpus = "rai_main" spacy_model = "it_core_news_md" elif dataset == "femicides/rai_ALL": corpus_tarball = "output/femicides/lome/lome_0shot/multilabel_rai_ALL_blocks" corpus = "rai_ALL" spacy_model = "it_core_news_md" elif dataset == "femicides/olv": corpus_tarball = "output/femicides/lome/lome_0shot/multilabel_olv_blocks" corpus = "olv" spacy_model = "it_core_news_md" elif dataset == "crashes/thecrashes": corpus_tarball = "output/crashes/lome/lome_0shot/multilabel_thecrashes_blocks" corpus = "thecrashes" spacy_model = "nl_core_news_md" elif dataset == "migration/pavia": corpus_tarball = "output/migration/lome/lome_0shot/multilabel_pavia_blocks" # corpus_tarball = "output/migration/lome/lome_zs-tgt_ev-frm/multilabel_pavia.tar.gz" corpus = "pavia" spacy_model = "it_core_news_md" else: raise ValueError("Unsupported dataset!") print("params:") print(f"\tcorpus_tarball: {corpus_tarball}") print(f"\tcorpus: {corpus}") print(f"\tspacy: {spacy_model}") print("processing files...") for block in os.listdir(corpus_tarball): print(block) with tarfile.open(os.path.join(corpus_tarball, block)) as tar_in: # check if output tarball exists cache_location = SYNTAX_ANALYSIS_CACHE_FILES[dataset] if not os.path.isdir(cache_location): os.makedirs(cache_location) lome_files = [f for f in tar_in.getmembers( ) if f.name.endswith(".comm.json")] lome_files.sort(key=lambda file: file.name) for file in lome_files: print(f"\tprocessing file {file}") doc_id = re.search(r"lome_(\d+)\.comm\.json", file.name).group(1) skipped = False if skip_fn is not None: if skip_fn(doc_id): print(f"\t\tskip_fn: skipping file {file}") skipped = True if skipped: syntax_analyses = None else: file_obj = io.TextIOWrapper(tar_in.extractfile(file)) annotations = json.load(file_obj) syntax_analyses = [] for sentence in annotations: syntax_analyses.append( syntax_analyze(sentence, spacy_model)) # use last two chars of filename as key file_key = doc_id[:2] cache_file = f"{cache_location}/{file_key}.json" if os.path.isfile(cache_file): with open(cache_file, encoding="utf-8") as f: key_cache = json.load(f) else: key_cache = {} key_cache[doc_id] = syntax_analyses with open(cache_file, "w", encoding="utf-8") as f: json.dump(key_cache, f) def make_syntax_cache_key(filename): doc_id = re.search(r"/\d+/lome_(\d+)\.comm\.json", filename).group(1) return doc_id def clean_sentence_(sentence): idx_to_remove = [] for i, tok in enumerate(sentence["tokens"]): # remove whitespace tokens if not tok.strip(): idx_to_remove.append(i) idx_to_remove.reverse() for idx in idx_to_remove: for annotation_list in sentence.values(): annotation_list.pop(idx) def process_prediction_file( filename: str, dataset_name: str, syntax_cache: str, deep_frames_cache: dict, tmp_cache: Optional[dict] = None, file_obj: io.TextIOBase = None, syntax_cache_key: Optional[str] = None, deep_frames_list: Optional[List[str]] = None, spacy_model: str = "it_core_news_md", spacy_model_obj = None ) -> Tuple[List, ...]: """ Process a predictions JSON file :param filename: path to the JSON file :param syntax_cache: see `make_syntax_cache()` :param spacy model: spacy model to be used for syntactic analysis :param file_obj: already opened object corresponding to `filename`. If given, `file_obj` will be used instead of loading it from `filename`. This is useful when reading the entire corpus from a tarball (which is what the SocioFillmore webapp does) :return: """ print("Processing", filename) if file_obj is not None: annotations = json.load(file_obj) else: with open(filename, encoding="utf-8") as f: annotations = json.load(f) if syntax_cache is None: syntax_analyses = [] for sentence in annotations: syntax_analyses.append(syntax_analyze(sentence, spacy_model, spacy_model_obj)) else: if syntax_cache_key is None: syntax_cache_key = make_syntax_cache_key(filename) if tmp_cache is not None and syntax_cache_key in tmp_cache: syntax_analyses = tmp_cache[syntax_cache_key] else: with open(f"{syntax_cache}/{syntax_cache_key[:2]}.json", encoding="utf-8") as cache_file: grouped_analyses = json.load(cache_file) syntax_analyses = grouped_analyses[syntax_cache_key] if tmp_cache is not None: tmp_cache.clear() tmp_cache.update(grouped_analyses) fn_structures: List[Dict[int, FrameStructure]] = [] sentences: List[List[str]] = [] role_analyses: List[Dict[int, Dict[str, str]]] = [] for sent_idx, sentence in enumerate(annotations): clean_sentence_(sentence) try: sent_structures = process_fn_sentence( sentence, deep_frames_cache, deep_frames_list=deep_frames_list ) # seems to occur for one specific file in the migration set, TODO find out what happens except AttributeError: print("Error processing FN annotations") sent_structures = {} syntax = syntax_analyses[sent_idx] # disambiguate syntactic constructions for fs in sent_structures.values(): target_idx = str(fs.target.tokens_idx[0]) if target_idx not in syntax: print( f"Prediction file {filename}: Cannot find syntactic information for target at idx={target_idx}") continue fs_syn = syntax[target_idx][-1] disambiguate_cxs_(fs, fs_syn) roles = process_syn_sem_roles(sent_structures, syntax) role_analyses.append(roles) sentences.append(sentence["tokens"]) fn_structures.append(sent_structures) return sentences, fn_structures, syntax_analyses, role_analyses def disambiguate_cxs_(struct: FrameStructure, tgt_syntax): # no "_" at the beginning: no disambiguation needed cx = tgt_syntax["syn_construction"] if not cx.startswith("_"): return # print(struct.frame, struct.deep_frame) # NB works only for the selected relevant frames! if any other frames are added, make sure to update this if struct.deep_frame in ["Transitive_action", "Causation", "Emotion_directed", "Quarreling", "Impact", "Committing_crime"]: frame_agentivity_type = "active" elif struct.frame in ACTIVE_FRAMES: frame_agentivity_type = "active" elif struct.frame == "Event": frame_agentivity_type = "impersonal" else: frame_agentivity_type = "unaccusative" if cx == "_verbal:ACTIVE": new_cx = f"verbal:{frame_agentivity_type}" elif cx in ["_verbal:ADPOS", "_verbal:OTH_PART"]: if frame_agentivity_type == "active": new_cx = "verbal:passive" else: new_cx = f"verbal:{frame_agentivity_type}" else: raise ValueError(f"Unknown construction placeholder {cx}") tgt_syntax["syn_construction"] = new_cx def find_governed_roles( syn_self: Dict[str, Any], syn_children: List[Dict[str, Any]], roles: List[Tuple[str, AnnotationSpan]], ) -> Dict[str, str]: roles_found = {} # find roles that are governed by the predicate for node in [syn_self] + syn_children: for role_name, role_span in roles: if node["lome_idx"] in role_span.tokens_idx: dep_label = node["dependency"] if role_name not in roles_found and dep_label not in IGNORE_DEP_LABELS: if node == syn_self: roles_found[role_name] = None else: roles_found[role_name] = dep_label + "↓" return roles_found def analyze_role_dependencies( fn_struct, syntax, role_analysis=None, tgt_idx=None, min_depth=-10, max_depth=10, depth=0, label_prefix="", ): if role_analysis is None: role_analysis = {} if tgt_idx is None: tgt_idx = fn_struct.target.tokens_idx[0] if depth > max_depth: return role_analysis if depth < min_depth: return role_analysis new_analysis = {} new_analysis.update(role_analysis) token_syntax = syntax[str(tgt_idx)][0] def update_analysis(mapping): for role, dep in mapping.items(): if role not in new_analysis: if label_prefix: if dep is None: label = label_prefix depth_label = depth else: label = label_prefix + "--" + dep depth_label = depth + 1 if depth > 0 else depth - 1 else: if dep is None: label = "⋆" depth_label = depth else: label = dep depth_label = depth + 1 if depth > 0 else depth - 1 new_analysis[role] = label, depth_label update_analysis( find_governed_roles( token_syntax, token_syntax["children"], fn_struct.roles) ) # from the initial predicate: first try the children if depth <= 0: for child in token_syntax["children"]: child_analysis = analyze_role_dependencies( fn_struct, syntax, role_analysis=new_analysis, tgt_idx=child["lome_idx"], max_depth=max_depth, min_depth=min_depth, depth=depth - 1, label_prefix=child["dependency"] + "↓" ) new_analysis.update(child_analysis) # ... then try the ancestors if depth >= 0: if not token_syntax["ancestors"]: return new_analysis first_ancestor = token_syntax["ancestors"][0] return analyze_role_dependencies( fn_struct, syntax, role_analysis=new_analysis, tgt_idx=first_ancestor["lome_idx"], max_depth=max_depth, min_depth=min_depth, depth=depth + 1, label_prefix=token_syntax["dependency"] + "↑", ) else: return new_analysis def process_syn_sem_roles( sent_structures: Dict[int, FrameStructure], syntax: Dict[str, List[Dict[str, Any]]] ) -> Dict[int, Dict[str, str]]: analyses = defaultdict(dict) # go through all frame targets for struct in sent_structures.values(): tgt_idx = struct.target.tokens_idx[0] role_deps = analyze_role_dependencies(struct, syntax, max_depth=10) analyses[tgt_idx] = clean_role_deps(role_deps) return analyses def clean_role_deps(role_deps): res = {} for role, (dep_str, depth) in role_deps.items(): dep_parts = dep_str.split("--") if len(dep_parts) == 1: res[role] = dep_str, depth else: res[role] = "--".join([dp[-1] for dp in dep_parts[:-1]] + [dep_parts[-1]]), depth return res def map_or_lookup_deep_frame( frame: str, deep_frames_cache, save_modified_cache=False, deep_frames_list=None ) -> Tuple[str, Dict[str, str]]: if frame in deep_frames_cache: return deep_frames_cache[frame] else: deep_frame, mapping = map_to_deep_frame( frame, deep_frames_list=deep_frames_list ) deep_frames_cache[frame] = [deep_frame, mapping] if save_modified_cache: with open(DEEP_FRAMES_CACHE_FILE, "w", encoding="utf-8") as f: json.dump(deep_frames_cache, f) return deep_frames_cache[frame] def map_to_deep_frame( frame: str, target: Optional[str] = None, mapping: Optional[Dict[str, str]] = None, self_mapping: Optional[Dict[str, str]] = None, deep_frames_list: Optional[List[str]] = None, ) -> Tuple[str, Dict[str, str]]: if deep_frames_list is None: deep_frames_list = DEEP_FRAMES # look up in FrameNet try: fn_entry = fn.frame(frame) except FramenetError: return frame, {} except LookupError: return frame, {} # initial call: `target` == `frame`, mapping maps to self if target is None: target = frame if mapping is None or self_mapping is None: mapping = self_mapping = {role: role for role in fn_entry.FE.keys()} # base case: our frame is a deep frame if frame in deep_frames_list: return frame, mapping # otherwise, look at parents inh_relations = [ fr for fr in fn_entry.frameRelations if fr.type.name == "Inheritance" and fr.Child == fn_entry ] parents = [fr.Parent for fr in inh_relations] # no parents --> failure, return original frame if not inh_relations: return target, self_mapping # one parent: follow that parent if len(inh_relations) == 1: parent_rel = inh_relations[0] parent = parents[0] new_mapping = define_fe_mapping(mapping, parent_rel) return map_to_deep_frame( parent.name, target, new_mapping, self_mapping, deep_frames_list ) # more parents: check if any of them leads to a deep frame deep_frames = [] deep_mappings = [] for parent_rel, parent in zip(inh_relations, parents): new_mapping = define_fe_mapping(mapping, parent_rel) final_frame, final_mapping = map_to_deep_frame( parent.name, target, new_mapping, self_mapping, deep_frames_list ) if final_frame in deep_frames_list: deep_frames.append(final_frame) deep_mappings.append(final_mapping) for deep_frame in deep_frames_list: if deep_frame in deep_frames: idx = deep_frames.index(deep_frame) return deep_frame, deep_mappings[idx] # nothing found, return original frame return target, self_mapping def define_fe_mapping(mapping, parent_rel): child_to_parent_mapping = { fer.subFEName: fer.superFEName for fer in parent_rel.feRelations } target_to_parent_mapping = { role: child_to_parent_mapping[mapping[role]] for role in mapping if mapping[role] in child_to_parent_mapping } return target_to_parent_mapping def is_at_root(syntax_info): # you should either be the actual root... if syntax_info["dependency"] == "ROOT": return True # ... or be the subject of the root if syntax_info["dependency"] == "nsubj" and syntax_info["ancestors"][0]["dependency"] == "ROOT": return True return False def get_tarball_blocks(dataset, lome_model="lome_0shot"): if dataset == "femicides/rai": return f"output/femicides/lome/{lome_model}/multilabel_rai_ALL_blocks" if dataset == "femicides/rai_main": return f"output/femicides/lome/{lome_model}/multilabel_rai_main_blocks" elif dataset == "femicides/olv": return f"output/femicides/lome/{lome_model}/multilabel_olv_blocks" elif dataset == "crashes/thecrashes": return f"output/crashes/lome/{lome_model}/multilabel_thecrashes_blocks" elif dataset == "migration/pavia": return f"output/migration/lome/{lome_model}/multilabel_pavia_blocks" else: raise ValueError("Unsupported dataset!") def analyze_single_document(doc_id, event_id, lome_model, dataset, texts_df, deep_frames_cache): data_domain, data_corpus = dataset.split("/") syntax_cache = SYNTAX_ANALYSIS_CACHE_FILES[dataset] print(dataset) if dataset == "migration/pavia": # this is a hack, fix it! pred_file_path = f"output/migration/lome/multilabel/{lome_model}/pavia/{event_id}/lome_{doc_id}.comm.json" elif dataset == "femicides/olv": pred_file_path = f"output/femicides/lome/lome_0shot/multilabel/olv/{event_id}/lome_{doc_id}.comm.json" else: pred_file_path = f"output/{data_domain}/lome/lome_0shot/multilabel/{data_corpus}/{event_id}/lome_{doc_id}.comm.json" print(f"Analyzing file {pred_file_path}") doc_id = os.path.basename(pred_file_path).split(".")[0].split("_")[1] doc_key = doc_id[:2] tarball = get_tarball_blocks(dataset, lome_model) + f"/block_{doc_key}.tar" with tarfile.open(tarball, "r") as tar_f: pred_file = io.TextIOWrapper(tar_f.extractfile(pred_file_path)) ( sents, pred_structures, syntax_analyses, role_analyses, ) = process_prediction_file( filename=pred_file_path, dataset_name=dataset, file_obj=pred_file, syntax_cache=syntax_cache, deep_frames_cache=deep_frames_cache ) output = [] for sent, structs, syntax, roles in zip( sents, pred_structures, syntax_analyses, role_analyses ): output.append( { "sentence": sent, "fn_structures": [ dataclasses.asdict(fs) for fs in structs.values() ], "syntax": syntax, "roles": roles, "meta": { "event_id": event_id, "doc_id": doc_id, "text_meta": get_text_meta(doc_id, texts_df), }, } ) return output def get_text_meta(doc_id, texts_df): row = texts_df[texts_df["text_id"] == int(doc_id)].iloc[0] if "pubdate" in row: pubdate = row["pubdate"] if not pd.isna(row["pubdate"]) else None elif "pubyear" in row: pubdate = int(row["pubyear"]) else: pubdate = None return { "url": row["url"] if "url" in row else None, "pubdate": pubdate, "provider": row["provider"], "title": row["title"] if not pd.isna(row["title"]) else None, "days_after_event": int(row["days_after_event"]) if "days_after_event" in row and not pd.isna(row["days_after_event"]) else 0 } def process_fn_sentence( sentence, deep_frames_cache, post_process=True, deep_frames_list=None ): # frame structures in the sentence sent_structures: Dict[int, FrameStructure] = {} # role spans currently being built up (per structure + role name) cur_spans: Dict[Tuple[int, str]] = {} for token_idx, (token_str, frame_annos) in enumerate( zip(sentence["tokens"], sentence["frame_list"]) ): for fa in frame_annos: # remove "virtual root" nonsense token if "@@VIRTUAL_ROOT@@" in fa: continue fa = fa.split("@@")[0] # remove confidence score if it's there anno, struct_id_str = fa.split("@") struct_id = int(struct_id_str) frame_name = anno.split(":")[1] deep_frame, deep_frame_mapping = map_or_lookup_deep_frame( frame_name, deep_frames_cache, deep_frames_list=deep_frames_list ) if struct_id not in sent_structures: sent_structures[struct_id] = FrameStructure( frame=frame_name, deep_frame=deep_frame, target=None, roles=[], deep_roles=[], ) cur_struct = sent_structures[struct_id] # TODO: get rid of this hack anno = anno.replace("I::", "I:") anno = anno.replace("B::", "B:") if anno.split(":")[0] == "T": if cur_struct.target is None: cur_struct.target = AnnotationSpan( [token_idx], [token_str]) else: cur_struct.target.tokens_idx.append(token_idx) cur_struct.target.tokens_str.append(token_str) elif anno.split(":")[0] == "B": role_name = anno.split(":")[2] role_span = AnnotationSpan([token_idx], [token_str]) cur_struct.roles.append((role_name, role_span)) if role_name in deep_frame_mapping: cur_struct.deep_roles.append( (deep_frame_mapping[role_name], role_span) ) cur_spans[(struct_id, role_name)] = role_span elif anno.split(":")[0] == "I": role_name = anno.split(":")[2] role_span = cur_spans[(struct_id, role_name)] role_span.tokens_str.append(token_str) role_span.tokens_idx.append(token_idx) # post-process: remove punctuation in targets if post_process: for fs in sent_structures.values(): if len(fs.target.tokens_str) > 1: target_tok_str_to_remove = [] target_tok_idx_to_remove = [] for tok_str, tok_idx in zip(fs.target.tokens_str, fs.target.tokens_idx): if tok_str in ["``", "''", "`", "'", ".", ",", ";", ":"]: target_tok_str_to_remove.append(tok_str) target_tok_idx_to_remove.append(tok_idx) for tok_str, tok_idx in zip( target_tok_str_to_remove, target_tok_idx_to_remove ): fs.target.tokens_str.remove(tok_str) fs.target.tokens_idx.remove(tok_idx) return sent_structures def map_back_spacy_lome_tokens(spacy_doc, lome_tokens): if len(lome_tokens) > len(spacy_doc): raise ValueError( f"Cannot re-tokenize (#lome={len(lome_tokens)} // #spacy={len(spacy_doc)})" ) spacy_to_lome = {} lome_idx = 0 for spacy_idx, spacy_token in enumerate(spacy_doc): spacy_to_lome[spacy_idx] = lome_idx # whitespace after token: tokens correspond if spacy_token.whitespace_: lome_idx += 1 return spacy_to_lome def get_syn_category(spacy_token): if spacy_token.pos_ == "NOUN": return "n" if spacy_token.pos_ == "ADJ": return "adj" if spacy_token.pos_ == "ADV": return "adv" if spacy_token.pos_ == "ADP": return "p" if spacy_token.pos_ == "VERB": if spacy_token.morph.get("VerbForm") == ["Fin"]: return "v:fin" if spacy_token.morph.get("VerbForm") == ["Part"]: return "v:part" if spacy_token.morph.get("VerbForm") == ["Ger"]: return "v:ger" if spacy_token.morph.get("VerbForm") == ["Inf"]: return "v:inf" return "other" def syntax_analyze(sentence, spacy_model_name, spacy_model_obj=None) -> Dict[str, Dict[str, Any]]: lome_tokens = sentence["tokens"] # load spacy model locally (so that it works in GAE) # global nlp if spacy_model_obj is not None: nlp = spacy_model_obj else: nlp = spacy.load(spacy_model_name) spacy_doc = nlp(" ".join(lome_tokens)) analysis = defaultdict(list) spacy_to_lome_tokens = map_back_spacy_lome_tokens(spacy_doc, lome_tokens) for spacy_idx, token in enumerate(spacy_doc): lome_idx = spacy_to_lome_tokens[spacy_idx] syn_category = get_syn_category(token) syn_construction = get_syn_construction(token, syn_category) children = [] for c in token.children: children.append( { "token": c.text, "spacy_idx": c.i, "lome_idx": spacy_to_lome_tokens[c.i], "syn_category": get_syn_category(c), "dependency": c.dep_, } ) ancestors = [] for a in token.ancestors: ancestors.append( { "token": a.text, "spacy_idx": a.i, "lome_idx": spacy_to_lome_tokens[a.i], "syn_category": get_syn_category(a), "dependency": a.dep_, } ) # str key so that it doesn't change when converting to JSON lome_key = str(lome_idx) analysis[lome_key].append( { "token": token.text, "dependency": token.dep_, "spacy_idx": spacy_idx, "lome_idx": lome_idx, "syn_category": syn_category, "syn_construction": syn_construction, "children": children, "ancestors": ancestors, } ) return analysis def get_syn_construction(token: Token, syn_category: str) -> str: if syn_category in ["n", "adj", "adv", "p"]: return "nonverbal" if syn_category.startswith("v:"): # find reflexives for c in token.children: if c.lemma_.lower() in ["si", "zich", "zichzelf"]: return "verbal:reflexive" # find impersonal constructions for c in token.children: if c.dep_ == "expl": return "verbal:impersonal" # all other finite verbs/gerunds/infinites -> active construction if syn_category in ["v:fin", "v:ger", "v:inf"]: return "_verbal:ACTIVE" if syn_category == "v:part": if token.dep_ == "acl": return "_verbal:ADPOS" for c in token.children: # passive subj or auxiliary present: it's a passive if c.dep_ in ["nsubj:pass", "aux:pass"]: return "verbal:passive" # auxiliary "HAVE" (avere/hebben) present: it's an active if ( c.dep_ == "aux" and c.lemma_.lower() in ITALIAN_ACTIVE_AUX + DUTCH_ACTIVE_AUX ): return "verbal:active" return "_verbal:OTH_PART" return "other" def get_syntax_info(struct: FrameStructure, syntax: Dict) -> Dict: target_idx = str(struct.target.tokens_idx[0]) # print(target_idx, syntax) syntax_for_target = syntax[target_idx] return syntax_for_target[-1] def enrich_texts_df(texts_df: pd.DataFrame, events_df: pd.DataFrame): time_delta_rows: List[Optional[int]] = [] for idx, text_row in texts_df.iterrows(): try: event_row = events_df[events_df["event:id"] == text_row["event_id"]].iloc[0] except IndexError: print(f"Skipping {idx} (IndexError)") time_delta_rows.append(None) if "pubdate" not in text_row or pd.isna(text_row["pubdate"]) or pd.isna(event_row["event:date"]): time_delta_rows.append(None) else: try: pub_date = datetime.strptime( text_row["pubdate"], "%Y-%m-%d %H:%M:%S") event_date = datetime.strptime( event_row["event:date"], "%Y-%m-%d") time_delta = pub_date - event_date time_delta_days = time_delta.days time_delta_rows.append(time_delta_days) except ValueError as e: print( f"\t\terror parsing dates, see below for more info:\n\t\t{e}") time_delta_rows.append(None) return texts_df.assign(days_after_event=time_delta_rows) def read_frames_of_interest(dataset) -> List[str]: if dataset in ["femicides/rai", "femicides/olv"]: file = "resources/femicide_frame_list.txt" elif dataset == "crashes/thecrashes": file = "resources/crashes_frame_list.txt" elif dataset == "migration/pavia": file = "resources/migration_frame_list.txt" else: raise ValueError("Unsupported dataset") frames = set() with open(file, encoding="utf-8") as f: for line in f: line = line.strip() if line.startswith("#") or not line: continue frames.add(line[0].upper() + line[1:].lower()) return sorted(frames) def make_dep_label_cache(): labels = set() for dataset in ["femicides/rai", "crashes/thecrashes", "migration/pavia"]: tarball = ( "output/femicides/lome/lome_0shot/multilabel_rai.tar.gz" if dataset == "femicides/rai" else "output/crashes/lome/lome_0shot/multilabel_thecrashes.tar.gz" if dataset == "crashes/thecrashes" else "output/migration/lome/lome_0shot/multilabel_pavia.tar.gz" ) spacy_model = ( "it_core_news_md" if dataset["femicides/rai", "migration/pavia"] else "nl_core_news_md" ) deep_frames_cache = load_deep_frames_cache(dataset) syntax_cache = SYNTAX_ANALYSIS_CACHE_FILES[dataset] with tarfile.open(tarball, "r:gz") as tar_f: for mem in [ m.name for m in tar_f.getmembers() if m.name.endswith(".comm.json") ]: if mem is None: continue print(mem) mem_obj = io.TextIOWrapper(tar_f.extractfile(mem)) (_, _, _, role_analyses,) = process_prediction_file( filename=mem, dataset_name=dataset, file_obj=mem_obj, syntax_cache=syntax_cache, deep_frames_cache=deep_frames_cache, spacy_model=spacy_model, ) if role_analyses is None: print(f"\tSkipping file {mem}, no role analyses found") continue for sent_ra in role_analyses: for ra in sent_ra.values(): for dep, _ in ra.values(): labels.add(dep) with open(DEP_LABEL_CACHE_FILE, "w", encoding="utf-8") as f_out: for label in sorted(labels): f_out.write(label + os.linesep) def analyze_external_file(file_in, file_out, spacy_model): deep_frames_cache = load_deep_frames_cache() ( sents, pred_structures, syntax_analyses, role_analyses, ) = process_prediction_file(file_in, "", None, deep_frames_cache, spacy_model_obj=spacy_model) output = [] for sent, structs, syntax, roles in zip( sents, pred_structures, syntax_analyses, role_analyses ): output.append( { "sentence": sent, "fn_structures": [ dataclasses.asdict(fs) for fs in structs.values() ], "syntax": syntax, "roles": roles } ) with open(file_out, "w", encoding="utf-8") as f_out: json.dump(output, f_out, indent=4) if __name__ == "__main__": ap = argparse.ArgumentParser() ap.add_argument("command", choices=[ "make_syntax_cache", "make_dep_label_cache", "analyze_file" ]) ap.add_argument("dataset", choices=["femicides/rai", "femicides/rai_main", "femicides/rai_ALL", "femicides/olv", "crashes/thecrashes", "migration/pavia", "*"]) ap.add_argument("--input_file", type=str, default="") ap.add_argument("--output_file", type=str, default="") args = ap.parse_args() if args.command == "make_syntax_cache": if args.dataset == "*": raise ValueError( "Please specificy a dataset for `make_syntax_cache`") if args.dataset == "crashes/thecrashes": make_syntax_cache( "crashes/thecrashes", skip_fn=lambda f: not is_a_dutch_text(f) ) elif args.dataset == "femicides/rai": make_syntax_cache("femicides/rai") elif args.dataset == "femicides/rai_main": make_syntax_cache("femicides/rai_main") elif args.dataset == "femicides/rai_ALL": make_syntax_cache("femicides/rai_ALL") elif args.dataset == "femicides/olv": make_syntax_cache("femicides/olv") else: make_syntax_cache("migration/pavia") elif args.command == "make_dep_label_cache": make_dep_label_cache() elif args.command == "analyze_file": analyze_external_file(args.input_file, args.output_file)