import os from openai import AsyncOpenAI import gradio as gr default_model = "llama3:8b-instruct-q4_K_M" models = ["llama3:8b-instruct-q4_K_M", "codestral:22b-v0.1-q4_K_M"] description = "Learn more at https://replicantzk.com." base_url = os.getenv("OPENAI_BASE_URL") or "https://platform.replicantzk.com" api_key = os.getenv("OPENAI_API_KEY") async def predict(message, history, model, temperature, stream, base_url, api_key): client = AsyncOpenAI(base_url=base_url, api_key=api_key) history_openai_format = [] for human, assistant in history: history_openai_format.append({"role": "user", "content": human}) history_openai_format.append({"role": "assistant", "content": assistant}) history_openai_format.append({"role": "user", "content": message}) try: response = await client.chat.completions.create( model=model, messages=history_openai_format, temperature=temperature, stream=stream, ) if stream: partial_message = "" async for chunk in response: if chunk.choices[0].delta.content is not None: partial_message += chunk.choices[0].delta.content yield partial_message else: yield response.choices[0].message.content except Exception as e: raise gr.Error(str(e)) model = gr.Dropdown(label="Model", choices=models, value=default_model) temperature = gr.Slider(0, 1, value=0, label="Temperature") stream = gr.Checkbox(value=True, label="Stream") base_url = gr.Textbox(label="OpenAI-compatible base URL", value=base_url) api_key = gr.Textbox(label="OpenAI-compatible API key", type="password", value=api_key) demo = gr.ChatInterface( fn=predict, additional_inputs=[model, temperature, stream, base_url, api_key], description=description, ) if __name__ == "__main__": demo.launch()