import pickle import datasets import os import umap if __name__ == "__main__": cache_file = "dataset_cache.pkl" if os.path.exists(cache_file): # Load dataset from cache with open(cache_file, "rb") as file: dataset = pickle.load(file) print("Dataset loaded from cache.") else: # Load dataset using datasets.load_dataset() ds = datasets.load_dataset("renumics/mnist-outlier", split="train") print("Dataset loaded using datasets.load_dataset().") df = ds.rename_columns({"label":"labels"}).to_pandas() df["label_str"] = df["labels"].apply(lambda x: ds.features["label"].int2str(x)) # df = df[:1000] # precalculate umap embeddings df["embedding_ft_precalc"] = umap.UMAP( n_neighbors=70, min_dist=0.5, random_state=42 ).fit_transform(df["embedding_ft"].tolist()).tolist() print("Umap for ft done") df["embedding_foundation_precalc"] = umap.UMAP( n_neighbors=70, min_dist=0.5, random_state=42 ).fit_transform(df["embedding_foundation"].tolist()).tolist() print("Umap for base done") # Save dataset to cache with open(cache_file, "wb") as file: pickle.dump(df, file) print("Dataset saved to cache.")