"""SpaceLlama3.1 demo gradio app.""" import datetime import logging import os import gradio as gr import torch import PIL.Image from prismatic import load from huggingface_hub import login # Authenticate with the Hugging Face Hub def authenticate_huggingface(): hf_token = os.getenv("HF_TOKEN") if hf_token: login(token=hf_token) else: raise ValueError("Hugging Face API token not found. Please set it as an environment variable named 'HF_TOKEN'.") # Call the authentication function once at the start authenticate_huggingface() INTRO_TEXT = """SpaceLlama3.1 demo\n\n | [Model](https://huggingface.co/remyxai/SpaceLlama3.1) | [GitHub](https://github.com/remyxai/VQASynth/tree/main) | [Demo](https://huggingface.co/spaces/remyxai/SpaceLlama3.1) | [Discord](https://discord.gg/DAy3P5wYJk) \n\n **This is an experimental research model.** Make sure to add appropriate guardrails when using the model for applications. """ # Set model location as a constant outside the function MODEL_LOCATION = "remyxai/SpaceLlama3.1" # Update as needed # Global model variable global_model = None def load_model(): """Loads the model globally.""" global global_model device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") global_model = load(MODEL_LOCATION) global_model.to(device, dtype=torch.bfloat16) logging.info("Model loaded successfully.") def compute(image, prompt): """Runs model inference.""" if image is None: raise gr.Error("Image required") logging.info('prompt="%s"', prompt) # Open the image file if isinstance(image, str): image = PIL.Image.open(image).convert("RGB") # Use the globally loaded model vlm = global_model # Prepare prompt prompt_builder = vlm.get_prompt_builder() prompt_builder.add_turn(role="human", message=prompt) prompt_text = prompt_builder.get_prompt() # Generate the text based on image and prompt generated_text = vlm.generate( image, prompt_text, do_sample=True, temperature=0.1, max_new_tokens=512, min_length=1, ) output = generated_text.split("")[0] logging.info('output="%s"', output) return output # Ensure that output is a string def reset(): """Resets the input fields.""" return "", None def create_app(): """Creates demo UI.""" with gr.Blocks() as demo: # Main UI structure gr.Markdown(INTRO_TEXT) with gr.Row(): image = gr.Image(value=None, label="Image", type="filepath", visible=True) # input with gr.Column(): prompt = gr.Textbox(value="", label="Prompt", visible=True) model_info = gr.Markdown(label="Model Info") run = gr.Button("Run", variant="primary") clear = gr.Button("Clear") highlighted_text = gr.HighlightedText(value="", label="Output", visible=True) # Button event handlers run.click( fn=compute, inputs=[image, prompt], outputs=highlighted_text, # Ensure this is the right output component ) clear.click(fn=reset, inputs=None, outputs=[prompt, image]) # Status status = gr.Markdown(f"Startup: {datetime.datetime.now()}") gpu_kind = gr.Markdown(f"GPU=?") demo.load( fn=lambda: f"Model `{MODEL_LOCATION}` loaded.", # Ensure the output is a string inputs=None, outputs=model_info, ) return demo if __name__ == "__main__": logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) for k, v in os.environ.items(): logging.info('environ["%s"] = %r', k, v) # Load the model once globally load_model() create_app().queue().launch()