from dataclasses import dataclass, make_dataclass from enum import Enum import pandas as pd from src.about import Tasks, nc_tasks, nr_tasks, lp_tasks def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False ## Leaderboard columns auto_eval_column_dict = [] # Init auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) #Scores auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]) for task in Tasks: auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) # Model information auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)]) auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) auto_eval_column_dict_nc = [] auto_eval_column_dict_nc.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) auto_eval_column_dict_nc.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)]) for task in nc_tasks: auto_eval_column_dict_nc.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.benchmark, "number", True)]) auto_eval_column_dict_nc.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)]) auto_eval_column_dict_nc.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)]) auto_eval_column_dict_nc.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)]) auto_eval_column_dict_nc.append(["Github_URL", ColumnContent, ColumnContent("Github URL", "markdown", True, never_hidden=False)]) auto_eval_column_dict_nc.append(["Time", ColumnContent, ColumnContent("Time", "markdown", True, never_hidden=False)]) #auto_eval_column_dict_nc.append(["num_of_Params", ColumnContent, ColumnContent("# of Params", "markdown", True, never_hidden=False)]) AutoEvalColumn_NodeClassification = make_dataclass("AutoEvalColumn_NodeClassification", auto_eval_column_dict_nc, frozen=True) auto_eval_column_dict_nr = [] auto_eval_column_dict_nr.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) auto_eval_column_dict_nr.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)]) for task in nr_tasks: auto_eval_column_dict_nr.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.benchmark, "number", True)]) auto_eval_column_dict_nr.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)]) auto_eval_column_dict_nr.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)]) auto_eval_column_dict_nr.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)]) auto_eval_column_dict_nr.append(["Github_URL", ColumnContent, ColumnContent("Github URL", "markdown", True, never_hidden=False)]) auto_eval_column_dict_nr.append(["Time", ColumnContent, ColumnContent("Time", "markdown", True, never_hidden=False)]) #auto_eval_column_dict_nr.append(["num_of_Params", ColumnContent, ColumnContent("# of Params", "markdown", True, never_hidden=False)]) AutoEvalColumn_NodeRegression = make_dataclass("AutoEvalColumn_NodeRegression", auto_eval_column_dict_nr, frozen=True) auto_eval_column_dict_lp = [] auto_eval_column_dict_lp.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) auto_eval_column_dict_lp.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)]) for task in lp_tasks: auto_eval_column_dict_lp.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.benchmark, "number", True)]) auto_eval_column_dict_lp.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)]) auto_eval_column_dict_lp.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)]) auto_eval_column_dict_lp.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)]) auto_eval_column_dict_lp.append(["Github_URL", ColumnContent, ColumnContent("Github URL", "markdown", True, never_hidden=False)]) auto_eval_column_dict_lp.append(["Time", ColumnContent, ColumnContent("Time", "markdown", True, never_hidden=False)]) #auto_eval_column_dict_lp.append(["num_of_Params", ColumnContent, ColumnContent("# of Params", "markdown", True, never_hidden=False)]) AutoEvalColumn_LinkPrediction = make_dataclass("AutoEvalColumn_LinkPrediction", auto_eval_column_dict_lp, frozen=True) ## For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) revision = ColumnContent("revision", "str", True) private = ColumnContent("private", "bool", True) precision = ColumnContent("precision", "str", True) weight_type = ColumnContent("weight_type", "str", "Original") status = ColumnContent("status", "str", True) ## All the model information that we might need @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji class ModelType(Enum): PT = ModelDetails(name="pretrained", symbol="🟢") FT = ModelDetails(name="fine-tuned", symbol="🔶") IFT = ModelDetails(name="instruction-tuned", symbol="⭕") RL = ModelDetails(name="RL-tuned", symbol="🟦") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "fine-tuned" in type or "🔶" in type: return ModelType.FT if "pretrained" in type or "🟢" in type: return ModelType.PT if "RL-tuned" in type or "🟦" in type: return ModelType.RL if "instruction-tuned" in type or "⭕" in type: return ModelType.IFT return ModelType.Unknown class OFFICIAL(Enum): official = ModelDetails("Official") unofficial = ModelDetails("Unofficial") class HONOR(Enum): yes = ModelDetails("Yes") no = ModelDetails("No") class TASK_LIST(Enum): amazon_user_churn = ModelDetails("rel-amazon-user-churn") amazon_item_churn = ModelDetails("rel-amazon-item-churn") amazon_user_ltv = ModelDetails("rel-amazon-user-ltv") amazon_item_ltv = ModelDetails("rel-amazon-item-ltv") amazon_user_item_purchase = ModelDetails("rel-amazon-user-item-purchase") amazon_user_item_rate = ModelDetails("rel-amazon-user-item-rate") amazon_user_item_review = ModelDetails("rel-amazon-user-item-review") # rel-stack stack_user_engagement = ModelDetails("rel-stack-user-engagement") stack_user_badge = ModelDetails("rel-stack-user-badge") stack_post_votes = ModelDetails("rel-stack-post-votes") stack_user_post_comment = ModelDetails("rel-stack-user-post-comment") stack_user_post_related = ModelDetails("rel-stack-user-post-related") # rel-trial trial_study_outcome = ModelDetails("rel-trial-study-outcome") trial_study_adverse = ModelDetails("rel-trial-study-adverse") trial_site_success = ModelDetails("rel-trial-site-success") trial_condition_sponsor_run = ModelDetails("rel-trial-condition-sponsor-run") trial_site_sponsor_run = ModelDetails("rel-trial-site-sponsor-run") # rel-f1 f1_driver_position = ModelDetails("rel-f1-driver-position") f1_driver_dnf = ModelDetails("rel-f1-driver-dnf") f1_driver_top3 = ModelDetails("rel-f1-driver-top3") # rel-hm hm_user_churn = ModelDetails("rel-hm-user-churn") hm_item_sales = ModelDetails("rel-hm-item-sales") hm_user_item_purchase = ModelDetails("rel-hm-user-item-purchase") # rel-event event_user_repeat = ModelDetails("rel-event-user-repeat") event_user_ignore = ModelDetails("rel-event-user-ignore") event_user_attendance = ModelDetails("rel-event-user-attendance") # rel-avito avito_user_visits = ModelDetails("rel-avito-user-visits") avito_user_clicks = ModelDetails("rel-avito-user-clicks") avito_ads_clicks = ModelDetails("rel-avito-ads-clicks") avito_user_ad_visit = ModelDetails("rel-avito-user-ad-visit") class WeightType(Enum): Adapter = ModelDetails("Adapter") Original = ModelDetails("Original") Delta = ModelDetails("Delta") class Precision(Enum): float16 = ModelDetails("float16") bfloat16 = ModelDetails("bfloat16") float32 = ModelDetails("float32") #qt_8bit = ModelDetails("8bit") #qt_4bit = ModelDetails("4bit") #qt_GPTQ = ModelDetails("GPTQ") Unknown = ModelDetails("?") def from_str(precision): if precision in ["torch.float16", "float16"]: return Precision.float16 if precision in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 if precision in ["float32"]: return Precision.float32 #if precision in ["8bit"]: # return Precision.qt_8bit #if precision in ["4bit"]: # return Precision.qt_4bit #if precision in ["GPTQ", "None"]: # return Precision.qt_GPTQ return Precision.Unknown # Column selection COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] COLS_NC = [c.name for c in fields(AutoEvalColumn_NodeClassification) if not c.hidden] COLS_NR = [c.name for c in fields(AutoEvalColumn_NodeRegression) if not c.hidden] COLS_LP = [c.name for c in fields(AutoEvalColumn_LinkPrediction) if not c.hidden] TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Tasks] NUMERIC_INTERVALS = { "?": pd.Interval(-1, 0, closed="right"), "~1.5": pd.Interval(0, 2, closed="right"), "~3": pd.Interval(2, 4, closed="right"), "~7": pd.Interval(4, 9, closed="right"), "~13": pd.Interval(9, 20, closed="right"), "~35": pd.Interval(20, 45, closed="right"), "~60": pd.Interval(45, 70, closed="right"), "70+": pd.Interval(70, 10000, closed="right"), }