import pandas as pd import gradio as gr from autogluon.text import TextPredictor # Load your saved AutoGluon model predictor = TextPredictor.load("trained_autogluon") # Define a prediction function for text classification def classify_text(text): single_row = pd.DataFrame([text], columns=["text"]) prediction = predictor.predict(single_row) return prediction[0] description_text = """ This [model](https://huggingface.co/manifesto-project/manifestoberta-xlm-roberta-56policy-topics-sentence-2023-1-1) was trained on over 8000 German tweets. The label definitions can be found in this [handbook](https://manifesto-project.wzb.eu/coding_schemes/mp_v4) from the Manifesto Project. With this app you can classify statements into political topics like this: 1. Enter some text in the input box. 2. Click 'Submit' or press 'Enter' to get the classification result. 3. If you want to know the label's definition, look it up [here](https://manifesto-project.wzb.eu/coding_schemes/mp_v4). """ # Create a Gradio interface demo = gr.Interface( fn=classify_text, inputs="text", outputs="label", title="Manifestoberta fine-tuned on Politweets", description=description_text ) # Launch the app demo.launch()