import asyncio from datetime import datetime, date, time from faicons import icon_svg from modules.get_rules_in_window import ( DF, LAST_UPDATED, START_DATE, GET_SIGNIFICANT, METADATA, AGENCIES, groupby_agency, groupby_ym, plot_agency, plot_month, ) from shiny import reactive from shiny.express import input, render, ui FOOTER = f""" ----- Developed by the [GW Regulatory Studies Center](https://go.gwu.edu/regstudies). See our page on the [Congressional Review Act](https://regulatorystudies.columbian.gwu.edu/congressional-review-act) for more information. """ ui.page_opts( title="Rules in the Congressional Review Act (CRA) Window", #fillable=True, ) with ui.sidebar(title="Settings"): ui.input_date("start_date", "Start of window", value=START_DATE, min=START_DATE, max=date.today()) ui.input_switch("switch", "Show significant rules in plots", False) ui.input_select("menu_agency", "Select agencies", choices=["all"] + AGENCIES, selected="all") #ui.input_checkbox_group( # "significant", # "EO 12866 Significance", # ["Section 3(f)(1)", "Other"], #) with ui.layout_column_wrap(): with ui.value_box(showcase=icon_svg("book")): "All final rules" @render.text def count_rules(): return f"{filtered_df()['document_number'].count()}" ui.input_action_button("filter_all", "View", ) #class_="btn-success") with ui.value_box(showcase=icon_svg("book")): "Section 3(f)(1) Significant rules" @render.text def count_3f1_significant(): output = "Not available" if GET_SIGNIFICANT: output = f"{filtered_df()['3f1_significant'].sum()}" return output ui.input_action_button("filter_3f1", "View", ) #class_="btn-success") with ui.value_box(showcase=icon_svg("book")): "Other Significant rules" @render.text def count_other_significant(): output = "Not available" if GET_SIGNIFICANT: output = f"{filtered_df()['other_significant'].sum()}" return output ui.input_action_button("filter_other", "View", ) with ui.navset_card_underline(title=""): with ui.nav_panel("Rules in detail"): @render.data_frame def table_rule_detail(): df = filtered_sig() #print(df.columns) #df.loc[:, "date"] = df.apply(lambda x: f"{x['publication_year']}-{x['publication_month']}-{x['publication_day']}", axis=1) df.loc[:, "date"] = df.loc[:, "publication_date"].apply(lambda x: f"{x.date()}") char, limit = " ", 10 df.loc[:, "title"] = df["title"].apply(lambda x: x if len(x.split(char)) < (limit + 1) else f"{char.join(x.split(char)[:limit])}...") df.loc[:, "agencies"] = df["parent_slug"].apply(lambda x: "; ".join(x)) cols = [ "date", "title", "agencies", "3f1_significant", "other_significant", ] return render.DataGrid(df.loc[:, [c for c in cols if c in df.columns]], width="100%") #filters=True) with ui.nav_panel("By month"): with ui.layout_columns(): @render.plot def plot_by_month(): grouped = grouped_df_month() return plot_month( grouped ) @render.data_frame def table_by_month(): grouped = grouped_df_month() cols = [ "publication_year", "publication_month", "rules", "3f1_significant", "other_significant", ] return render.DataTable(grouped.loc[:, [c for c in cols if c in grouped.columns]]) with ui.nav_panel("By agency"): with ui.layout_columns(): @render.plot def plot_by_agency(): grouped = grouped_df_agency() if input.switch(): pass # placeholder for stacked bar chart else: plot = plot_agency( grouped.head(10), ) return plot @render.data_frame def table_by_agency(): grouped = grouped_df_agency() cols = [ "agency", "acronym", "rules", "3f1_significant", "other_significant", ] return render.DataTable(grouped.loc[:, [c for c in cols if c in grouped.columns]]) with ui.accordion(open=False): with ui.accordion_panel("Download Data"): @render.download( label="Download data as CSV", filename=f"rules_in_cra_window_accessed_{date.today()}.csv", ) async def download(): await asyncio.sleep(0.25) yield filtered_df().to_csv(index=False) with ui.accordion(open=False): with ui.accordion_panel("Notes"): ui.markdown( f""" Rule data retrieved from the [Federal Register API](https://www.federalregister.gov/developers/documentation/api/v1). Executive Order 12866 significance data last updated **{LAST_UPDATED}**. """ ) ui.markdown( FOOTER ) #ui.tags.footer() # ----- REACTIVE CALCULATIONS ----- # @reactive.calc def filtered_df(): filt_df = DF # filter dates try: filt_df = filt_df.loc[filt_df["publication_date"] >= input.start_date()] except TypeError: filt_df = filt_df.loc[filt_df["publication_date"] >= datetime.combine(input.start_date(), time(0, 0))] # filter agencies if input.menu_agency() != "all": bool_agency = [True if input.menu_agency() in agency else False for agency in filt_df["parent_slug"]] filt_df = filt_df.loc[bool_agency] return filt_df @reactive.calc def filtered_sig(): filt_df = filtered_df() # filter significance if filter_value.get() == "all": pass elif filter_value.get() == "3f1": filt_df = filt_df.loc[filt_df["3f1_significant"] == 1] elif filter_value.get() == "other": filt_df = filt_df.loc[filt_df["other_significant"] == 1] return filt_df @reactive.calc def grouped_df_month(): filt_df = filtered_sig() grouped = groupby_ym(filt_df, significant=GET_SIGNIFICANT) return grouped @reactive.calc def grouped_df_agency(): filt_df = filtered_sig() grouped = groupby_agency(filt_df, metadata=METADATA, significant=GET_SIGNIFICANT) return grouped # ----- REACTIVE VALUES ----- # filter_value = reactive.value("all") @reactive.effect @reactive.event(input.filter_all) def _(): filter_value.set("all") filtered_df() @reactive.effect @reactive.event(input.filter_3f1) def _(): filter_value.set("3f1") filtered_df() @reactive.effect @reactive.event(input.filter_other) def _(): filter_value.set("other") filtered_df()