import streamlit as st import yaml import requests import re import os from pdfParser import get_pdf_text # Get HuggingFace API key api_key_name = "HUGGINGFACE_HUB_TOKEN" api_key = os.getenv(api_key_name) if api_key is None: st.error(f"Failed to read `{api_key_name}`. Ensure the token is correctly located") with open("config/model_config.yml", "r") as file: model_config = yaml.safe_load(file) system_message = model_config["system_message"] model_id = model_config["model_id"] def query(payload, model_id): headers = {"Authorization": f"Bearer {api_key}"} API_URL = f"https://api-inference.huggingface.co/models/{model_id}" response = requests.post(API_URL, headers=headers, json=payload) return response.json() def prompt_generator(system_message, user_message): return f""" [INST] <> {system_message} <> {user_message} [/INST] """ # Pattern to clean up text response from API pattern = r".*\[/INST\]([\s\S]*)$" # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Include PDF upload ability pdf_upload = st.file_uploader( "Upload a .PDF here", type=".pdf", ) if pdf_upload is not None: pdf_text = get_pdf_text(pdf_upload) if "key_inputs" not in st.session_state: st.session_state.key_inputs = {} col1, col2, col3 = st.columns([3, 3, 2]) with col1: key_name = st.text_input("Key/Column Name (e.g. patient_name)", key="key_name") with col2: key_description = st.text_area( "*(Optional) Description of key/column", key="key_description" ) with col3: if st.button("Extract this column"): if key_description: st.session_state.key_inputs[key_name] = key_description else: st.session_state.key_inputs[key_name] = "No further description provided" if st.session_state.key_inputs: keys_title = st.write("\nKeys/Columns for extraction:") keys_values = st.write(st.session_state.key_inputs) with st.spinner("Extracting requested data"): if st.button("Extract data!"): user_message = f""" Use the text provided and denoted by 3 backticks ```{pdf_text}```. Extract the following columns and return a table that could be uploaded to an SQL database. {'; '.join([key + ': ' + st.session_state.key_inputs[key] for key in st.session_state.key_inputs])} """ the_prompt = prompt_generator( system_message=system_message, user_message=user_message ) response = query( { "inputs": the_prompt, "parameters": {"max_new_tokens": 500, "temperature": 0.1}, }, model_id, ) try: match = re.search( pattern, response[0]["generated_text"], re.MULTILINE | re.DOTALL ) if match: response = match.group(1).strip() response = eval(response) st.success("Data Extracted Successfully!") st.write(response) except: st.error("Unable to connect to model. Please try again later.") # st.success(f"Data Extracted!")