import librosa import torch import torchaudio class Slicer: def __init__(self, sr: int, threshold: float = -40, min_length: int = 5000, min_interval: int = 300, hop_size: int = 20, max_sil_kept: int = 5000): if not min_length >= min_interval >= hop_size: raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size') if not max_sil_kept >= hop_size: raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size') min_interval = sr * min_interval / 1000 self.threshold = 10 ** (threshold / 20.) self.hop_size = round(sr * hop_size / 1000) self.win_size = min(round(min_interval), 4 * self.hop_size) self.min_length = round(sr * min_length / 1000 / self.hop_size) self.min_interval = round(min_interval / self.hop_size) self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size) def _apply_slice(self, waveform, begin, end): if len(waveform.shape) > 1: return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)] else: return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)] # @timeit def slice(self, waveform): if len(waveform.shape) > 1: samples = librosa.to_mono(waveform) else: samples = waveform if samples.shape[0] <= self.min_length: return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}} rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0) sil_tags = [] silence_start = None clip_start = 0 for i, rms in enumerate(rms_list): # Keep looping while frame is silent. if rms < self.threshold: # Record start of silent frames. if silence_start is None: silence_start = i continue # Keep looping while frame is not silent and silence start has not been recorded. if silence_start is None: continue # Clear recorded silence start if interval is not enough or clip is too short is_leading_silence = silence_start == 0 and i > self.max_sil_kept need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length if not is_leading_silence and not need_slice_middle: silence_start = None continue # Need slicing. Record the range of silent frames to be removed. if i - silence_start <= self.max_sil_kept: pos = rms_list[silence_start: i + 1].argmin() + silence_start if silence_start == 0: sil_tags.append((0, pos)) else: sil_tags.append((pos, pos)) clip_start = pos elif i - silence_start <= self.max_sil_kept * 2: pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin() pos += i - self.max_sil_kept pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept if silence_start == 0: sil_tags.append((0, pos_r)) clip_start = pos_r else: sil_tags.append((min(pos_l, pos), max(pos_r, pos))) clip_start = max(pos_r, pos) else: pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept if silence_start == 0: sil_tags.append((0, pos_r)) else: sil_tags.append((pos_l, pos_r)) clip_start = pos_r silence_start = None # Deal with trailing silence. total_frames = rms_list.shape[0] if silence_start is not None and total_frames - silence_start >= self.min_interval: silence_end = min(total_frames, silence_start + self.max_sil_kept) pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start sil_tags.append((pos, total_frames + 1)) # Apply and return slices. if len(sil_tags) == 0: return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}} else: chunks = [] # 第一段静音并非从头开始,补上有声片段 if sil_tags[0][0]: chunks.append( {"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"}) for i in range(0, len(sil_tags)): # 标识有声片段(跳过第一段) if i: chunks.append({"slice": False, "split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"}) # 标识所有静音片段 chunks.append({"slice": True, "split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"}) # 最后一段静音并非结尾,补上结尾片段 if sil_tags[-1][1] * self.hop_size < len(waveform): chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"}) chunk_dict = {} for i in range(len(chunks)): chunk_dict[str(i)] = chunks[i] return chunk_dict def cut(audio_path, db_thresh=-30, min_len=5000): audio, sr = librosa.load(audio_path, sr=None) slicer = Slicer( sr=sr, threshold=db_thresh, min_length=min_len ) chunks = slicer.slice(audio) return chunks def chunks2audio(audio_path, chunks): chunks = dict(chunks) audio, sr = torchaudio.load(audio_path) if len(audio.shape) == 2 and audio.shape[1] >= 2: audio = torch.mean(audio, dim=0).unsqueeze(0) audio = audio.cpu().numpy()[0] result = [] for k, v in chunks.items(): tag = v["split_time"].split(",") if tag[0] != tag[1]: result.append((v["slice"], audio[int(tag[0]):int(tag[1])])) return result, sr