import gradio as gr import torch from transformers import pipeline # 1) Pipeline de Whisper-small para ES → texto ES device = 0 if torch.cuda.is_available() else -1 asr = pipeline( "automatic-speech-recognition", model="openai/whisper-small", # <-- modelo pequeño para CPU device=device, generate_kwargs={"task": "transcribe", "language": "es"} ) # 2) Función de transcripción def transcribe(audio_path): return asr(audio_path)["text"] # 3) Interfaz Gradio demo = gr.Interface( fn=transcribe, inputs=gr.Audio(type="filepath", label="Sube audio (ES)"), # sin source="upload" outputs=gr.Textbox(label="Transcripción"), title="Audio→Texto en Español", description="Transcribe audio en español con Whisper-small" ) if __name__ == "__main__": demo.launch()