from transformers import AutoImageProcessor, ResNetForImageClassification import torch from datasets import load_dataset import joblib dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] print(image) processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") loaded_model = joblib.load("model.sav") inputs = processor(image, return_tensors="pt") with torch.no_grad(): logits = loaded_model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(loaded_model.config.id2label[predicted_label])