import gradio as gr #Import libraries import torch import torchvision.models as models import json import skimage #Import User Defined libraries from neural_network_model import initialize_existing_models, build_custom_models, set_parameter_requires_grad from utilities import process_image, get_input_args_predict def predict(image_path, model, topk=5): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() tensor_img = torch.FloatTensor(process_image(image_path)) tensor_img = tensor_img.unsqueeze(0) tensor_img = tensor_img.to(device) log_ps = model(tensor_img) result = log_ps.topk(topk) if torch.cuda.is_available(): #gpu Move it from gpu to cpu for numpy ps = torch.exp(result[0].data).cpu().numpy()[0] idxs = result[1].data.cpu().numpy()[0] else: #cpu Keep it on cpu for nump ps = torch.exp(result[0].data).numpy()[0] idxs = result[1].data.numpy()[0] return (ps, idxs) def process_input(image_path): #0. Get user inputs #in_arg = vars(get_input_args_predict()) #print("User arguments/hyperparameters or default used are as below") #print(in_arg) in_arg = {} in_arg['gpu'] = 'gpu' in_arg['save_dir'] = 'checkpoint-densenet121.pth' in_arg['path'] = image_path in_arg['top_k'] = 5 print(in_arg) #1. Get device for prediction and Load model from checkpoint along with some other information if in_arg['gpu'] == 'gpu' and torch.cuda.is_available(): device = torch.device("cuda") checkpoint = torch.load(in_arg['save_dir']) else: device = "cpu" checkpoint = torch.load(in_arg['save_dir'], map_location = device) #print(f"Using {device} device for predicting/inference") checkpoint['arch_type'] = 'existing' if checkpoint['arch_type'] == 'existing': model_ft, input_size = initialize_existing_models(checkpoint['arch'], checkpoint['arch_type'], len(checkpoint['class_to_idx']), checkpoint['feature_extract'], checkpoint['hidden_units'], use_pretrained=False) elif checkpoint['arch_type'] == 'custom': model_ft = build_custom_models(checkpoint['arch'], checkpoint['arch_type'], len(checkpoint['class_to_idx']), checkpoint['feature_extract'], checkpoint['hidden_units'], use_pretrained=True) else: #print("Nothing to predict") exit() model_ft.class_to_idx = checkpoint['class_to_idx'] model_ft.gpu_or_cpu = checkpoint['gpu_or_cpu'] model_ft.load_state_dict(checkpoint['state_dict']) model_ft.to(device) #Predict # Get the prediction by passing image and other user preferences through the model probs, idxs = predict(image_path = in_arg['path'], model = model_ft, topk = in_arg['top_k']) # Swap class to index mapping with index to class mapping and then map the classes to flower category labels using the json file idx_to_class = {v: k for k, v in model_ft.class_to_idx.items()} with open('cat_to_name.json','r') as f: cat_to_name = json.load(f) names = list(map(lambda x: cat_to_name[f"{idx_to_class[x]}"],idxs)) #return names, probs return {names[i]: float(probs[i]) for i in range(len(names))} examples = ['16_image_06670.jpg','33_image_06460.jpg','80_image_02020.jpg', 'Flowers.png','inference_example.png'] title = "Image Classifier - Which species of Flower?" description = "An image classifier to recognize different species of flowers trained on 102 Category Flower Dataset" article = article="
" interpretation = 'default' enable_queue = True iface = gr.Interface(fn=process_input, inputs=gr.inputs.Image(type='filepath'), outputs=gr.outputs.Label(num_top_classes=3), examples = examples, title=title, description=description,article=article,interpretation=interpretation, enable_queue=enable_queue ) iface.launch()