import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Moondream does not support the HuggingFace pipeline system, so we have to do it manually moondream_id = "vikhyatk/moondream2" moondream_revision = "2024-04-02" moondream_tokenizer = AutoTokenizer.from_pretrained(moondream_id, code_revision=moondream_revision) moondream_model = AutoModelForCausalLM.from_pretrained( moondream_id, trust_remote_code=True, code_revision=moondream_revision ) def answer_question(_img, _prompt): image_embeds = moondream_model.encode_image(_img) return moondream_model.answer_question(image_embeds, _prompt, moondream_tokenizer) with gr.Blocks() as app: gr.Markdown( """ # Food Identifier Final project for IAT 481 at Simon Fraser University, Spring 2024. """ ) with gr.Row(): prompt = gr.Textbox(label="Input", value="Describe this image.") submit = gr.Button("Submit") with gr.Row(): img = gr.Image(label="Image", type="pil") output = gr.TextArea(label="Output") submit.click(answer_question, [img, prompt], output) prompt.submit(answer_question, [img, prompt], output) if __name__ == "__main__": app.launch()