import pickle import numpy as np import xgboost # from xgboost import XGBClassifier # import xgboost as xgb """Input: NULL Output: Model """ def load_model(): load_model = pickle.load(open('model/xgb_f_beta_model.sav','rb')) return load_model """ Input: Model, Selected_date Data Output: Predicted Score """ def prediction(model,data): pred = model.predict_proba(data) score = np.average(pred[:,1:]) return score