Spaces:
Runtime error
Runtime error
ALL files
Browse files- .gitattributes +3 -0
- README.md +1 -1
- app.py +46 -0
- inference.py +84 -0
- model.py +522 -0
- requirements.txt +13 -0
- tokenizer/train_tokenizer_objects.pickle +3 -0
- tokenizer/valid_tokenizer_objects.pickle +3 -0
- weights/transformer_weights.h5 +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
train_tokenizer_objects.pickle filter=lfs diff=lfs merge=lfs -text
|
29 |
+
valid_tokenizer_objects.pickle filter=lfs diff=lfs merge=lfs -text
|
30 |
+
transformer_weights.h5 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Eng Ass Former
|
3 |
-
emoji:
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
6 |
sdk: streamlit
|
|
|
1 |
---
|
2 |
title: Eng Ass Former
|
3 |
+
emoji: 🤖
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
6 |
sdk: streamlit
|
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import model
|
3 |
+
import inference
|
4 |
+
|
5 |
+
|
6 |
+
with st.spinner('Your TransFormer is on the way...'):
|
7 |
+
if 'transformer' not in st.session_state:
|
8 |
+
transformer,tokenizer_ass,tokenizer_en,MAX_LENGTH = model.prepare_model()
|
9 |
+
|
10 |
+
st.session_state['transformer'] = transformer
|
11 |
+
st.session_state['tokenizer_ass'] = tokenizer_ass
|
12 |
+
st.session_state['tokenizer_en'] = tokenizer_en
|
13 |
+
st.session_state['MAX_LENGTH'] = MAX_LENGTH
|
14 |
+
|
15 |
+
def show_information():
|
16 |
+
st.header('Translate Assamese with Transformer!🤖')
|
17 |
+
|
18 |
+
def select_text():
|
19 |
+
option = st.selectbox(
|
20 |
+
'Select these suggested Assamese Sentences',
|
21 |
+
('মানুহে সদায় ইজনে সিজনক সহায় কৰিব লাগিব',
|
22 |
+
'আমি সদায় আমাৰ মাক সন্মান কৰিব লাগিব',
|
23 |
+
'আপুনি আপোনাৰ সপোন প্ৰাপ্ত নকৰালৈকে সদায় কঠোৰ আৰু কঠোৰ পৰিশ্ৰম কৰিব লাগিব'))
|
24 |
+
|
25 |
+
st.write('You have selected suggested text')
|
26 |
+
|
27 |
+
title = st.text_input('Assamese Text Input', option)
|
28 |
+
# st.write('Your Assamese Text', title)
|
29 |
+
|
30 |
+
return title
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
def main():
|
35 |
+
st.title('📚Assamese to English Translator🤖')
|
36 |
+
show_information()
|
37 |
+
text = select_text()
|
38 |
+
if st.button('Translate'):
|
39 |
+
result = inference.translate_main(st.session_state['transformer'],text,st.session_state['tokenizer_ass'],
|
40 |
+
st.session_state['tokenizer_en'],st.session_state['MAX_LENGTH'])
|
41 |
+
|
42 |
+
st.caption('Your Assamese translated text')
|
43 |
+
st.text(result)
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
main()
|
inference.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.add_dll_directory("C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2/bin")
|
3 |
+
import tensorflow as tf
|
4 |
+
|
5 |
+
def create_padding_mask(seq):
|
6 |
+
seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
|
7 |
+
# add extra dimensions to add the padding
|
8 |
+
# to the attention logits.
|
9 |
+
return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len)
|
10 |
+
|
11 |
+
def create_look_ahead_mask(size):
|
12 |
+
mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
|
13 |
+
return mask # (seq_len, seq_len)
|
14 |
+
|
15 |
+
def create_masks(inp, tar):
|
16 |
+
# Encoder padding mask
|
17 |
+
enc_padding_mask = create_padding_mask(inp)
|
18 |
+
|
19 |
+
# Used in the 2nd attention block in the decoder.
|
20 |
+
# This padding mask is used to mask the encoder outputs.
|
21 |
+
dec_padding_mask = create_padding_mask(inp)
|
22 |
+
|
23 |
+
# Used in the 1st attention block in the decoder.
|
24 |
+
# It is used to pad and mask future tokens in the input received by
|
25 |
+
# the decoder.
|
26 |
+
look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1])
|
27 |
+
dec_target_padding_mask = create_padding_mask(tar)
|
28 |
+
combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask)
|
29 |
+
|
30 |
+
return enc_padding_mask, combined_mask, dec_padding_mask
|
31 |
+
|
32 |
+
def translate_main(transformer,inp_sentence,tokenizer_ass,tokenizer_en,MAX_LENGTH):
|
33 |
+
def evaluate(inp_sentence):
|
34 |
+
start_token = [tokenizer_ass.vocab_size]
|
35 |
+
end_token = [tokenizer_ass.vocab_size + 1]
|
36 |
+
|
37 |
+
# inp sentence is portuguese, hence adding the start and end token
|
38 |
+
inp_sentence = start_token + tokenizer_ass.encode(inp_sentence) + end_token
|
39 |
+
encoder_input = tf.expand_dims(inp_sentence, 0)
|
40 |
+
|
41 |
+
# as the target is english, the first word to the transformer should be the
|
42 |
+
# english start token.
|
43 |
+
decoder_input = [tokenizer_en.vocab_size]
|
44 |
+
output = tf.expand_dims(decoder_input, 0)
|
45 |
+
|
46 |
+
for i in range(MAX_LENGTH):
|
47 |
+
enc_padding_mask, combined_mask, dec_padding_mask = create_masks(
|
48 |
+
encoder_input, output)
|
49 |
+
|
50 |
+
# predictions.shape == (batch_size, seq_len, vocab_size)
|
51 |
+
predictions, attention_weights = transformer(encoder_input,
|
52 |
+
output,
|
53 |
+
False,
|
54 |
+
enc_padding_mask,
|
55 |
+
combined_mask,
|
56 |
+
dec_padding_mask)
|
57 |
+
|
58 |
+
# select the last word from the seq_len dimension
|
59 |
+
predictions = predictions[: ,-1:, :] # (batch_size, 1, vocab_size)
|
60 |
+
|
61 |
+
predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
|
62 |
+
|
63 |
+
# return the result if the predicted_id is equal to the end token
|
64 |
+
if predicted_id == tokenizer_en.vocab_size+1:
|
65 |
+
return tf.squeeze(output, axis=0), attention_weights
|
66 |
+
|
67 |
+
# concatentate the predicted_id to the output which is given to the decoder
|
68 |
+
# as its input.
|
69 |
+
output = tf.concat([output, predicted_id], axis=-1)
|
70 |
+
|
71 |
+
return tf.squeeze(output, axis=0), attention_weights
|
72 |
+
|
73 |
+
def translate(sentence):
|
74 |
+
result, attention_weights = evaluate(sentence)
|
75 |
+
|
76 |
+
predicted_sentence = tokenizer_en.decode([i for i in result
|
77 |
+
if i < tokenizer_en.vocab_size])
|
78 |
+
|
79 |
+
# print('Input: {}'.format(sentence))
|
80 |
+
# print('Predicted translation: {}'.format(predicted_sentence))
|
81 |
+
return predicted_sentence
|
82 |
+
|
83 |
+
result = translate(inp_sentence)
|
84 |
+
return result
|
model.py
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.add_dll_directory("C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2/bin")
|
3 |
+
import tensorflow as tf
|
4 |
+
import tensorflow_datasets as tfds
|
5 |
+
import os
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
import time
|
9 |
+
import re
|
10 |
+
import pickle
|
11 |
+
|
12 |
+
|
13 |
+
def pickle_load():
|
14 |
+
with open("tokenizer/train_tokenizer_objects.pickle", 'rb') as f:
|
15 |
+
data = pickle.load(f)
|
16 |
+
train_ass = data['input_tensor']
|
17 |
+
train_eng = data['target_tensor']
|
18 |
+
train = data['train']
|
19 |
+
|
20 |
+
return train,train_ass,train_eng
|
21 |
+
|
22 |
+
|
23 |
+
def prepare_datasets():
|
24 |
+
|
25 |
+
train,train_ass,train_eng = pickle_load()
|
26 |
+
def encode(lang1, lang2):
|
27 |
+
lang1 = [tokenizer_ass.vocab_size] + tokenizer_ass.encode(
|
28 |
+
lang1.numpy()) + [tokenizer_ass.vocab_size+1]
|
29 |
+
|
30 |
+
lang2 = [tokenizer_en.vocab_size] + tokenizer_en.encode(
|
31 |
+
lang2.numpy()) + [tokenizer_en.vocab_size+1]
|
32 |
+
|
33 |
+
return lang1, lang2
|
34 |
+
|
35 |
+
def filter_max_length(x, y, max_length=40):
|
36 |
+
return tf.logical_and(tf.size(x) <= max_length,
|
37 |
+
tf.size(y) <= max_length)
|
38 |
+
|
39 |
+
def tf_encode(row):
|
40 |
+
result_ass, result_en = tf.py_function(encode, [row[1], row[0]], [tf.int64, tf.int64])
|
41 |
+
result_ass.set_shape([None])
|
42 |
+
result_en.set_shape([None])
|
43 |
+
|
44 |
+
return result_ass, result_en
|
45 |
+
|
46 |
+
train_ = tf.data.Dataset.from_tensor_slices(train)
|
47 |
+
|
48 |
+
en = tf.data.Dataset.from_tensor_slices(train_eng.to_list())
|
49 |
+
ass = tf.data.Dataset.from_tensor_slices(train_ass.to_list())
|
50 |
+
|
51 |
+
tokenizer_en = tfds.deprecated.text.SubwordTextEncoder.build_from_corpus(
|
52 |
+
(e.numpy() for e in en), target_vocab_size=2**13)
|
53 |
+
|
54 |
+
tokenizer_ass = tfds.deprecated.text.SubwordTextEncoder.build_from_corpus(
|
55 |
+
(a.numpy() for a in ass), target_vocab_size=2**13)
|
56 |
+
|
57 |
+
input_vocab_size = tokenizer_ass.vocab_size + 2
|
58 |
+
target_vocab_size = tokenizer_en.vocab_size + 2
|
59 |
+
|
60 |
+
|
61 |
+
BUFFER_SIZE = 20000
|
62 |
+
BATCH_SIZE = 64
|
63 |
+
MAX_LENGTH = 40
|
64 |
+
|
65 |
+
train_dataset = train_.map(tf_encode)
|
66 |
+
train_dataset = train_dataset.filter(filter_max_length)
|
67 |
+
# cache the dataset to memory to get a speedup while reading from it.
|
68 |
+
train_dataset = train_dataset.cache()
|
69 |
+
train_dataset = train_dataset.shuffle(BUFFER_SIZE).padded_batch(BATCH_SIZE)
|
70 |
+
train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)
|
71 |
+
|
72 |
+
return train_dataset,tokenizer_en,tokenizer_ass
|
73 |
+
|
74 |
+
|
75 |
+
def get_angles(pos, i, d_model):
|
76 |
+
angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
|
77 |
+
return pos * angle_rates
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
def positional_encoding(position, d_model):
|
82 |
+
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
|
83 |
+
np.arange(d_model)[np.newaxis, :],
|
84 |
+
d_model)
|
85 |
+
|
86 |
+
# apply sin to even indices in the array; 2i
|
87 |
+
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
|
88 |
+
|
89 |
+
# apply cos to odd indices in the array; 2i+1
|
90 |
+
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
|
91 |
+
|
92 |
+
pos_encoding = angle_rads[np.newaxis, ...]
|
93 |
+
|
94 |
+
return tf.cast(pos_encoding, dtype=tf.float32)
|
95 |
+
|
96 |
+
|
97 |
+
# Masking
|
98 |
+
|
99 |
+
'''Mask all the pad tokens in the batch of sequence.
|
100 |
+
It ensures that the model does not treat padding as the input.
|
101 |
+
The mask indicates where pad value 0 is present: it outputs a 1 at those locations, and a 0 otherwise.
|
102 |
+
'''
|
103 |
+
|
104 |
+
def create_padding_mask(seq):
|
105 |
+
seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
|
106 |
+
|
107 |
+
# add extra dimensions to add the padding
|
108 |
+
# to the attention logits.
|
109 |
+
return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len)
|
110 |
+
|
111 |
+
# Looakahead mask
|
112 |
+
|
113 |
+
"""The look-ahead mask is used to mask the future tokens in a sequence.
|
114 |
+
In other words, the mask indicates which entries should not be used.
|
115 |
+
"""
|
116 |
+
def create_look_ahead_mask(size):
|
117 |
+
mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
|
118 |
+
return mask # (seq_len, seq_len)
|
119 |
+
|
120 |
+
def scaled_dot_product_attention(q, k, v, mask):
|
121 |
+
"""Calculate the attention weights.
|
122 |
+
q, k, v must have matching leading dimensions.
|
123 |
+
k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v.
|
124 |
+
The mask has different shapes depending on its type(padding or look ahead)
|
125 |
+
but it must be broadcastable for addition.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
q: query shape == (..., seq_len_q, depth)
|
129 |
+
k: key shape == (..., seq_len_k, depth)
|
130 |
+
v: value shape == (..., seq_len_v, depth_v)
|
131 |
+
mask: Float tensor with shape broadcastable
|
132 |
+
to (..., seq_len_q, seq_len_k). Defaults to None.
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
output, attention_weights
|
136 |
+
"""
|
137 |
+
|
138 |
+
|
139 |
+
matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k)
|
140 |
+
|
141 |
+
# scale matmul_qk
|
142 |
+
dk = tf.cast(tf.shape(k)[-1], tf.float32)
|
143 |
+
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
|
144 |
+
|
145 |
+
# add the mask to the scaled tensor.
|
146 |
+
if mask is not None:
|
147 |
+
scaled_attention_logits += (mask * -1e9)
|
148 |
+
|
149 |
+
# softmax is normalized on the last axis (seq_len_k) so that the scores
|
150 |
+
# add up to 1.
|
151 |
+
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k)
|
152 |
+
|
153 |
+
output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v)
|
154 |
+
|
155 |
+
return output, attention_weights
|
156 |
+
|
157 |
+
|
158 |
+
class MultiHeadAttention(tf.keras.layers.Layer):
|
159 |
+
def __init__(self, d_model, num_heads):
|
160 |
+
super(MultiHeadAttention, self).__init__()
|
161 |
+
self.num_heads = num_heads
|
162 |
+
self.d_model = d_model
|
163 |
+
|
164 |
+
assert d_model % self.num_heads == 0
|
165 |
+
|
166 |
+
self.depth = d_model // self.num_heads
|
167 |
+
|
168 |
+
self.wq = tf.keras.layers.Dense(d_model)
|
169 |
+
self.wk = tf.keras.layers.Dense(d_model)
|
170 |
+
self.wv = tf.keras.layers.Dense(d_model)
|
171 |
+
|
172 |
+
self.dense = tf.keras.layers.Dense(d_model)
|
173 |
+
|
174 |
+
def split_heads(self, x, batch_size):
|
175 |
+
"""Split the last dimension into (num_heads, depth).
|
176 |
+
Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
|
177 |
+
"""
|
178 |
+
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
|
179 |
+
return tf.transpose(x, perm=[0, 2, 1, 3])
|
180 |
+
|
181 |
+
def call(self, v, k, q, mask):
|
182 |
+
batch_size = tf.shape(q)[0]
|
183 |
+
|
184 |
+
q = self.wq(q) # (batch_size, seq_len, d_model)
|
185 |
+
k = self.wk(k) # (batch_size, seq_len, d_model)
|
186 |
+
v = self.wv(v) # (batch_size, seq_len, d_model)
|
187 |
+
|
188 |
+
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
|
189 |
+
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
|
190 |
+
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)
|
191 |
+
|
192 |
+
# scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
|
193 |
+
# attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
|
194 |
+
scaled_attention, attention_weights = scaled_dot_product_attention(
|
195 |
+
q, k, v, mask)
|
196 |
+
|
197 |
+
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth)
|
198 |
+
|
199 |
+
concat_attention = tf.reshape(scaled_attention,
|
200 |
+
(batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model)
|
201 |
+
|
202 |
+
output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model)
|
203 |
+
|
204 |
+
return output, attention_weights
|
205 |
+
|
206 |
+
# dff are the number of activation units that you have in feedforward models
|
207 |
+
def point_wise_feed_forward_network(d_model, dff):
|
208 |
+
return tf.keras.Sequential([
|
209 |
+
tf.keras.layers.Dense(dff, activation='relu'), # (batch_size, seq_len, dff)
|
210 |
+
tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model)
|
211 |
+
])
|
212 |
+
|
213 |
+
class EncoderLayer(tf.keras.layers.Layer):
|
214 |
+
def __init__(self, d_model, num_heads, dff, rate=0.1):
|
215 |
+
super(EncoderLayer, self).__init__()
|
216 |
+
|
217 |
+
self.mha = MultiHeadAttention(d_model, num_heads)
|
218 |
+
self.ffn = point_wise_feed_forward_network(d_model, dff)
|
219 |
+
|
220 |
+
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
221 |
+
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
222 |
+
|
223 |
+
self.dropout1 = tf.keras.layers.Dropout(rate)
|
224 |
+
self.dropout2 = tf.keras.layers.Dropout(rate)
|
225 |
+
|
226 |
+
def call(self, x, training, mask):
|
227 |
+
|
228 |
+
attn_output, _ = self.mha(x, x, x, mask) # (batch_size, input_seq_len, d_model)
|
229 |
+
attn_output = self.dropout1(attn_output, training=training)
|
230 |
+
out1 = self.layernorm1(x + attn_output) # (batch_size, input_seq_len, d_model)
|
231 |
+
|
232 |
+
ffn_output = self.ffn(out1) # (batch_size, input_seq_len, d_model)
|
233 |
+
ffn_output = self.dropout2(ffn_output, training=training)
|
234 |
+
out2 = self.layernorm2(out1 + ffn_output) # (batch_size, input_seq_len, d_model)
|
235 |
+
|
236 |
+
return out2
|
237 |
+
|
238 |
+
class DecoderLayer(tf.keras.layers.Layer):
|
239 |
+
def __init__(self, d_model, num_heads, dff, rate=0.1):
|
240 |
+
super(DecoderLayer, self).__init__()
|
241 |
+
|
242 |
+
self.mha1 = MultiHeadAttention(d_model, num_heads)
|
243 |
+
self.mha2 = MultiHeadAttention(d_model, num_heads)
|
244 |
+
|
245 |
+
self.ffn = point_wise_feed_forward_network(d_model, dff)
|
246 |
+
|
247 |
+
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
248 |
+
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
249 |
+
self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
250 |
+
|
251 |
+
self.dropout1 = tf.keras.layers.Dropout(rate)
|
252 |
+
self.dropout2 = tf.keras.layers.Dropout(rate)
|
253 |
+
self.dropout3 = tf.keras.layers.Dropout(rate)
|
254 |
+
|
255 |
+
|
256 |
+
def call(self, x, enc_output, training,
|
257 |
+
look_ahead_mask, padding_mask):
|
258 |
+
# enc_output.shape == (batch_size, input_seq_len, d_model)
|
259 |
+
|
260 |
+
attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask) # (batch_size, target_seq_len, d_model)
|
261 |
+
attn1 = self.dropout1(attn1, training=training)
|
262 |
+
out1 = self.layernorm1(attn1 + x)
|
263 |
+
|
264 |
+
attn2, attn_weights_block2 = self.mha2(
|
265 |
+
enc_output, enc_output, out1, padding_mask) # (batch_size, target_seq_len, d_model)
|
266 |
+
attn2 = self.dropout2(attn2, training=training)
|
267 |
+
out2 = self.layernorm2(attn2 + out1) # (batch_size, target_seq_len, d_model)
|
268 |
+
|
269 |
+
ffn_output = self.ffn(out2) # (batch_size, target_seq_len, d_model)
|
270 |
+
ffn_output = self.dropout3(ffn_output, training=training)
|
271 |
+
out3 = self.layernorm3(ffn_output + out2) # (batch_size, target_seq_len, d_model)
|
272 |
+
|
273 |
+
return out3, attn_weights_block1, attn_weights_block2
|
274 |
+
|
275 |
+
class Encoder(tf.keras.layers.Layer):
|
276 |
+
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
|
277 |
+
maximum_position_encoding, rate=0.1):
|
278 |
+
super(Encoder, self).__init__()
|
279 |
+
|
280 |
+
self.d_model = d_model
|
281 |
+
self.num_layers = num_layers
|
282 |
+
|
283 |
+
self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)
|
284 |
+
self.pos_encoding = positional_encoding(maximum_position_encoding,
|
285 |
+
self.d_model)
|
286 |
+
|
287 |
+
|
288 |
+
self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate)
|
289 |
+
for _ in range(num_layers)]
|
290 |
+
|
291 |
+
self.dropout = tf.keras.layers.Dropout(rate)
|
292 |
+
|
293 |
+
def call(self, x, training, mask):
|
294 |
+
|
295 |
+
seq_len = tf.shape(x)[1]
|
296 |
+
|
297 |
+
# adding embedding and position encoding.
|
298 |
+
x = self.embedding(x) # (batch_size, input_seq_len, d_model)
|
299 |
+
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
|
300 |
+
x += self.pos_encoding[:, :seq_len, :]
|
301 |
+
|
302 |
+
x = self.dropout(x, training=training)
|
303 |
+
|
304 |
+
for i in range(self.num_layers):
|
305 |
+
x = self.enc_layers[i](x, training, mask)
|
306 |
+
|
307 |
+
return x # (batch_size, input_seq_len, d_model)
|
308 |
+
|
309 |
+
|
310 |
+
class Decoder(tf.keras.layers.Layer):
|
311 |
+
def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size,
|
312 |
+
maximum_position_encoding, rate=0.1):
|
313 |
+
super(Decoder, self).__init__()
|
314 |
+
|
315 |
+
self.d_model = d_model
|
316 |
+
self.num_layers = num_layers
|
317 |
+
|
318 |
+
self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model)
|
319 |
+
self.pos_encoding = positional_encoding(maximum_position_encoding, d_model)
|
320 |
+
|
321 |
+
self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate)
|
322 |
+
for _ in range(num_layers)]
|
323 |
+
self.dropout = tf.keras.layers.Dropout(rate)
|
324 |
+
|
325 |
+
def call(self, x, enc_output, training,
|
326 |
+
look_ahead_mask, padding_mask):
|
327 |
+
|
328 |
+
seq_len = tf.shape(x)[1]
|
329 |
+
attention_weights = {}
|
330 |
+
|
331 |
+
x = self.embedding(x) # (batch_size, target_seq_len, d_model)
|
332 |
+
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
|
333 |
+
x += self.pos_encoding[:, :seq_len, :]
|
334 |
+
|
335 |
+
x = self.dropout(x, training=training)
|
336 |
+
|
337 |
+
for i in range(self.num_layers):
|
338 |
+
x, block1, block2 = self.dec_layers[i](x, enc_output, training,
|
339 |
+
look_ahead_mask, padding_mask)
|
340 |
+
|
341 |
+
attention_weights['decoder_layer{}_block1'.format(i+1)] = block1
|
342 |
+
attention_weights['decoder_layer{}_block2'.format(i+1)] = block2
|
343 |
+
|
344 |
+
# x.shape == (batch_size, target_seq_len, d_model)
|
345 |
+
return x, attention_weights
|
346 |
+
|
347 |
+
class Transformer(tf.keras.Model):
|
348 |
+
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
|
349 |
+
target_vocab_size, pe_input, pe_target, rate=0.1):
|
350 |
+
super(Transformer, self).__init__()
|
351 |
+
|
352 |
+
self.encoder = Encoder(num_layers, d_model, num_heads, dff,
|
353 |
+
input_vocab_size, pe_input, rate)
|
354 |
+
|
355 |
+
self.decoder = Decoder(num_layers, d_model, num_heads, dff,
|
356 |
+
target_vocab_size, pe_target, rate)
|
357 |
+
|
358 |
+
self.final_layer = tf.keras.layers.Dense(target_vocab_size)
|
359 |
+
|
360 |
+
def call(self, inp, tar, training, enc_padding_mask,
|
361 |
+
look_ahead_mask, dec_padding_mask):
|
362 |
+
|
363 |
+
enc_output = self.encoder(inp, training, enc_padding_mask) # (batch_size, inp_seq_len, d_model)
|
364 |
+
|
365 |
+
# dec_output.shape == (batch_size, tar_seq_len, d_model)
|
366 |
+
dec_output, attention_weights = self.decoder(
|
367 |
+
tar, enc_output, training, look_ahead_mask, dec_padding_mask)
|
368 |
+
|
369 |
+
final_output = self.final_layer(dec_output) # (batch_size, tar_seq_len, target_vocab_size)
|
370 |
+
|
371 |
+
return final_output, attention_weights
|
372 |
+
|
373 |
+
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
|
374 |
+
def __init__(self, d_model, warmup_steps=4000):
|
375 |
+
super(CustomSchedule, self).__init__()
|
376 |
+
|
377 |
+
self.d_model = d_model
|
378 |
+
self.d_model = tf.cast(self.d_model, tf.float32)
|
379 |
+
|
380 |
+
self.warmup_steps = warmup_steps
|
381 |
+
|
382 |
+
def __call__(self, step):
|
383 |
+
arg1 = tf.math.rsqrt(step)
|
384 |
+
arg2 = step * (self.warmup_steps ** -1.5)
|
385 |
+
|
386 |
+
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
|
387 |
+
|
388 |
+
def create_masks(inp, tar):
|
389 |
+
# Encoder padding mask
|
390 |
+
enc_padding_mask = create_padding_mask(inp)
|
391 |
+
|
392 |
+
# Used in the 2nd attention block in the decoder.
|
393 |
+
# This padding mask is used to mask the encoder outputs.
|
394 |
+
dec_padding_mask = create_padding_mask(inp)
|
395 |
+
|
396 |
+
# Used in the 1st attention block in the decoder.
|
397 |
+
# It is used to pad and mask future tokens in the input received by
|
398 |
+
# the decoder.
|
399 |
+
look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1])
|
400 |
+
dec_target_padding_mask = create_padding_mask(tar)
|
401 |
+
combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask)
|
402 |
+
|
403 |
+
return enc_padding_mask, combined_mask, dec_padding_mask
|
404 |
+
|
405 |
+
def prepare_model():
|
406 |
+
train_dataset,tokenizer_en,tokenizer_ass = prepare_datasets()
|
407 |
+
num_layers = 4
|
408 |
+
d_model = 128
|
409 |
+
dff = 512
|
410 |
+
num_heads = 8
|
411 |
+
|
412 |
+
input_vocab_size = tokenizer_ass.vocab_size + 2
|
413 |
+
target_vocab_size = tokenizer_en.vocab_size + 2
|
414 |
+
dropout_rate = 0.1
|
415 |
+
learning_rate = CustomSchedule(d_model)
|
416 |
+
|
417 |
+
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98,
|
418 |
+
epsilon=1e-7)
|
419 |
+
|
420 |
+
temp_learning_rate_schedule = CustomSchedule(d_model)
|
421 |
+
|
422 |
+
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
|
423 |
+
from_logits=True, reduction='none')
|
424 |
+
|
425 |
+
def loss_function(real, pred):
|
426 |
+
mask = tf.math.logical_not(tf.math.equal(real, 0))
|
427 |
+
loss_ = loss_object(real, pred)
|
428 |
+
|
429 |
+
mask = tf.cast(mask, dtype=loss_.dtype)
|
430 |
+
loss_ *= mask
|
431 |
+
|
432 |
+
return tf.reduce_sum(loss_)/tf.reduce_sum(mask)
|
433 |
+
|
434 |
+
train_loss = tf.keras.metrics.Mean(name='train_loss')
|
435 |
+
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
|
436 |
+
name='train_accuracy')
|
437 |
+
|
438 |
+
transformer = Transformer(num_layers, d_model, num_heads, dff,
|
439 |
+
input_vocab_size, target_vocab_size,
|
440 |
+
pe_input=input_vocab_size,
|
441 |
+
pe_target=target_vocab_size,
|
442 |
+
rate=dropout_rate)
|
443 |
+
|
444 |
+
checkpoint_path = "C:\Huggingface\Eng-Ass-Former\checkpoints"
|
445 |
+
|
446 |
+
ckpt = tf.train.Checkpoint(transformer=transformer,
|
447 |
+
optimizer=optimizer)
|
448 |
+
|
449 |
+
ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)
|
450 |
+
|
451 |
+
# if a checkpoint exists, restore the latest checkpoint.
|
452 |
+
if ckpt_manager.latest_checkpoint:
|
453 |
+
ckpt.restore(ckpt_manager.latest_checkpoint)
|
454 |
+
print ('Latest checkpoint restored!!')
|
455 |
+
|
456 |
+
EPOCHS = 1
|
457 |
+
# The @tf.function trace-compiles train_step into a TF graph for faster
|
458 |
+
# execution. The function specializes to the precise shape of the argument
|
459 |
+
# tensors. To avoid re-tracing due to the variable sequence lengths or variable
|
460 |
+
# batch sizes (the last batch is smaller), use input_signature to specify
|
461 |
+
# more generic shapes.
|
462 |
+
|
463 |
+
train_step_signature = [
|
464 |
+
tf.TensorSpec(shape=(None, None), dtype=tf.int64),
|
465 |
+
tf.TensorSpec(shape=(None, None), dtype=tf.int64),
|
466 |
+
]
|
467 |
+
|
468 |
+
@tf.function(input_signature=train_step_signature)
|
469 |
+
def train_step(inp, tar):
|
470 |
+
tar_inp = tar[:, :-1]
|
471 |
+
tar_real = tar[:, 1:]
|
472 |
+
|
473 |
+
enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp)
|
474 |
+
|
475 |
+
with tf.GradientTape() as tape:
|
476 |
+
predictions, _ = transformer(inp, tar_inp,
|
477 |
+
True,
|
478 |
+
enc_padding_mask,
|
479 |
+
combined_mask,
|
480 |
+
dec_padding_mask)
|
481 |
+
loss = loss_function(tar_real, predictions)
|
482 |
+
|
483 |
+
gradients = tape.gradient(loss, transformer.trainable_variables)
|
484 |
+
optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
|
485 |
+
|
486 |
+
train_loss(loss)
|
487 |
+
train_accuracy(tar_real, predictions)
|
488 |
+
|
489 |
+
print("STARTING THE TRAINING PROCESS!")
|
490 |
+
for epoch in range(EPOCHS):
|
491 |
+
start = time.time()
|
492 |
+
train_loss.reset_states()
|
493 |
+
train_accuracy.reset_states()
|
494 |
+
|
495 |
+
# inp -> portuguese, tar -> english
|
496 |
+
for (batch, (inp, tar)) in enumerate(train_dataset):
|
497 |
+
train_step(inp, tar)
|
498 |
+
if batch % 50 == 0:
|
499 |
+
print ('Epoch {} Batch {} Loss {:.4f} Accuracy {:.4f}'.format(
|
500 |
+
epoch + 1, batch, train_loss.result(), train_accuracy.result()))
|
501 |
+
break
|
502 |
+
|
503 |
+
if (epoch + 1) % 5 == 0:
|
504 |
+
ckpt_save_path = ckpt_manager.save()
|
505 |
+
print ('Saving checkpoint for epoch {} at {}'.format(epoch+1,
|
506 |
+
ckpt_save_path))
|
507 |
+
|
508 |
+
print ('Epoch {} Loss {:.4f} Accuracy {:.4f}'.format(epoch + 1,
|
509 |
+
train_loss.result(),
|
510 |
+
train_accuracy.result()))
|
511 |
+
|
512 |
+
print ('Time taken for 1 epoch: {} secs\n'.format(time.time() - start))
|
513 |
+
|
514 |
+
|
515 |
+
transformer.load_weights('weights/transformer_weights.h5')
|
516 |
+
|
517 |
+
print("Weight Loaded")
|
518 |
+
return transformer,tokenizer_ass,tokenizer_en,40
|
519 |
+
|
520 |
+
# if __name__ == "__main__":
|
521 |
+
# prepare_model_params()
|
522 |
+
# print("DONE")
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
keras==2.8.0
|
2 |
+
Keras-Preprocessing==1.1.2
|
3 |
+
nltk==3.7
|
4 |
+
numpy==1.21.3
|
5 |
+
pandas==1.4.1
|
6 |
+
pickleshare==0.7.5
|
7 |
+
regex==2022.3.15
|
8 |
+
scikit-learn==1.0.2
|
9 |
+
scipy==1.8.0
|
10 |
+
streamlit==1.7.0
|
11 |
+
tensorflow==2.8.0
|
12 |
+
tensorflow-datasets==4.0.1
|
13 |
+
|
tokenizer/train_tokenizer_objects.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:832911b2b7dcc722c2b7596be08ba99e814aaacd031fea173d10fda9df5d7ba1
|
3 |
+
size 29437531
|
tokenizer/valid_tokenizer_objects.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b0fa0fb957513bb3a5e5bc9e9bacd2a9eea933bb26b41380251c0f87f4380a1
|
3 |
+
size 7395243
|
weights/transformer_weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56a682c81530d7666e75d1df4ecb9c82f29c3e905f4a59e31211b2c6ae8a42ff
|
3 |
+
size 19690032
|