import torch import gradio as gr import yt_dlp as youtube_dl from transformers import pipeline from huggingface_hub import model_info import re import tempfile import os MODEL_NAME = "razhan/whisper-small-ckb" BATCH_SIZE = 1 FILE_LIMIT_MB = 10 YT_LENGTH_LIMIT_S = 60 * 10 device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(task="transcribe") def transcribe(microphone, file_upload): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" ) elif (microphone is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" file = microphone if microphone is not None else file_upload text = pipe(file)["text"] return warn_output + text def _return_yt_html_embed(yt_url): if 'youtu.be' in yt_url: video_id = yt_url.split('/')[-1].split('?')[0] else: video_id = yt_url.split("?v=")[-1].split('&')[0] HTML_str = ( f'
' ) return HTML_str def yt_transcribe(yt_url, task="transcribe", max_filesize=75.0, progress=gr.Progress()): html_embed_str = _return_yt_html_embed(yt_url) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "video.mp4") download_yt_audio(yt_url, filepath) with open(filepath, "rb") as f: inputs = f.read() inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} start_time = time.time() outputs = pipe(inputs, chunk_length_s=30, batch_size=BATCH_SIZE, generate_kwargs={"task": task, "language": "persian"}, return_timestamps=False) exec_time = time.time() - start_time logging.info(print(f"transcribe: {exec_time} sec.")) return html_embed_str, txt, exec_time def download_yt_audio(yt_url, filename, progress=gr.Progress()): if '&list' in yt_url: yt_url = yt_url.split('&list')[0] info_loader = youtube_dl.YoutubeDL() try: info = info_loader.extract_info(yt_url, download=False) except youtube_dl.utils.DownloadError as err: raise gr.Error(str(err)) file_length = info["duration_string"] file_h_m_s = file_length.split(":") file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] if len(file_h_m_s) == 1: file_h_m_s.insert(0, 0) if len(file_h_m_s) == 2: file_h_m_s.insert(0, 0) file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] if file_length_s > YT_LENGTH_LIMIT_S: yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") # ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"} with youtube_dl.YoutubeDL(ydl_opts) as ydl: try: ydl.download([yt_url]) except youtube_dl.utils.ExtractorError as err: raise gr.Error(str(err)) progress(1, desc="Video downloaded from YouTube!") demo = gr.Blocks() mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="microphone", type="filepath"), gr.Audio(sources="upload", type="filepath"), ], outputs="text", theme="huggingface", title="Whisper Central Kurdish‌ (Sorani) Demo: Transcribe Audio", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" " of arbitrary length." ), allow_flagging="never", ) yt_transcribe = gr.Interface( fn=yt_transcribe, inputs=[gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")], outputs=["html", gr.Textbox( label="Output", rtl=True, show_copy_button=True, ), gr.Text(label="Transcription Time") ], theme="huggingface", title="Whisper Central Kurdish‌ (Sorani) Demo: Transcribe YouTube", description=( "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:" f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of" " arbitrary length." ), allow_flagging="never", ) with demo: gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) demo.launch()