import argparse import logging import sys from copy import deepcopy sys.path.append("./") # to run '$ python *.py' files in subdirectories logger = logging.getLogger(__name__) from models.common import * from models.experimental import * from utils.autoanchor import check_anchor_order from utils.general import make_divisible, check_file, set_logging from utils.torch_utils import ( time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, select_device, copy_attr, ) from utils.loss import SigmoidBin try: import thop # for FLOPS computation except ImportError: thop = None class Detect(nn.Module): stride = None # strides computed during build export = False # onnx export def __init__(self, nc=80, anchors=(), ch=()): # detection layer super(Detect, self).__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer("anchors", a) # shape(nl,na,2) self.register_buffer( "anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2) ) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList( nn.Conv2d(x, self.no * self.na, 1) for x in ch ) # output conv def forward(self, x): # x = x.copy() # for profiling z = [] # inference output self.training |= self.export for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = ( x[i] .view(bs, self.na, self.no, ny, nx) .permute(0, 1, 3, 4, 2) .contiguous() ) if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) y = x[i].sigmoid() y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[ i ] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() class IDetect(nn.Module): stride = None # strides computed during build export = False # onnx export def __init__(self, nc=80, anchors=(), ch=()): # detection layer super(IDetect, self).__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer("anchors", a) # shape(nl,na,2) self.register_buffer( "anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2) ) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList( nn.Conv2d(x, self.no * self.na, 1) for x in ch ) # output conv self.ia = nn.ModuleList(ImplicitA(x) for x in ch) self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch) def forward(self, x): # x = x.copy() # for profiling z = [] # inference output self.training |= self.export for i in range(self.nl): x[i] = self.m[i](self.ia[i](x[i])) # conv x[i] = self.im[i](x[i]) bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = ( x[i] .view(bs, self.na, self.no, ny, nx) .permute(0, 1, 3, 4, 2) .contiguous() ) if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) y = x[i].sigmoid() y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[ i ] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() class IAuxDetect(nn.Module): stride = None # strides computed during build export = False # onnx export def __init__(self, nc=80, anchors=(), ch=()): # detection layer super(IAuxDetect, self).__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer("anchors", a) # shape(nl,na,2) self.register_buffer( "anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2) ) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList( nn.Conv2d(x, self.no * self.na, 1) for x in ch[: self.nl] ) # output conv self.m2 = nn.ModuleList( nn.Conv2d(x, self.no * self.na, 1) for x in ch[self.nl :] ) # output conv self.ia = nn.ModuleList(ImplicitA(x) for x in ch[: self.nl]) self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch[: self.nl]) def forward(self, x): # x = x.copy() # for profiling z = [] # inference output self.training |= self.export for i in range(self.nl): x[i] = self.m[i](self.ia[i](x[i])) # conv x[i] = self.im[i](x[i]) bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = ( x[i] .view(bs, self.na, self.no, ny, nx) .permute(0, 1, 3, 4, 2) .contiguous() ) x[i + self.nl] = self.m2[i](x[i + self.nl]) x[i + self.nl] = ( x[i + self.nl] .view(bs, self.na, self.no, ny, nx) .permute(0, 1, 3, 4, 2) .contiguous() ) if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) y = x[i].sigmoid() y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[ i ] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x[: self.nl]) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() class IBin(nn.Module): stride = None # strides computed during build export = False # onnx export def __init__(self, nc=80, anchors=(), ch=(), bin_count=21): # detection layer super(IBin, self).__init__() self.nc = nc # number of classes self.bin_count = bin_count self.w_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0) self.h_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0) # classes, x,y,obj self.no = ( nc + 3 + self.w_bin_sigmoid.get_length() + self.h_bin_sigmoid.get_length() ) # w-bce, h-bce # + self.x_bin_sigmoid.get_length() + self.y_bin_sigmoid.get_length() self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer("anchors", a) # shape(nl,na,2) self.register_buffer( "anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2) ) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList( nn.Conv2d(x, self.no * self.na, 1) for x in ch ) # output conv self.ia = nn.ModuleList(ImplicitA(x) for x in ch) self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch) def forward(self, x): # self.x_bin_sigmoid.use_fw_regression = True # self.y_bin_sigmoid.use_fw_regression = True self.w_bin_sigmoid.use_fw_regression = True self.h_bin_sigmoid.use_fw_regression = True # x = x.copy() # for profiling z = [] # inference output self.training |= self.export for i in range(self.nl): x[i] = self.m[i](self.ia[i](x[i])) # conv x[i] = self.im[i](x[i]) bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = ( x[i] .view(bs, self.na, self.no, ny, nx) .permute(0, 1, 3, 4, 2) .contiguous() ) if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) y = x[i].sigmoid() y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[ i ] # xy # y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh # px = (self.x_bin_sigmoid.forward(y[..., 0:12]) + self.grid[i][..., 0]) * self.stride[i] # py = (self.y_bin_sigmoid.forward(y[..., 12:24]) + self.grid[i][..., 1]) * self.stride[i] pw = ( self.w_bin_sigmoid.forward(y[..., 2:24]) * self.anchor_grid[i][..., 0] ) ph = ( self.h_bin_sigmoid.forward(y[..., 24:46]) * self.anchor_grid[i][..., 1] ) # y[..., 0] = px # y[..., 1] = py y[..., 2] = pw y[..., 3] = ph y = torch.cat((y[..., 0:4], y[..., 46:]), dim=-1) z.append(y.view(bs, -1, y.shape[-1])) return x if self.training else (torch.cat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() class Model(nn.Module): def __init__( self, cfg="yolor-csp-c.yaml", ch=3, nc=None, anchors=None ): # model, input channels, number of classes super(Model, self).__init__() self.traced = False if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg) as f: self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict # Define model ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels if nc and nc != self.yaml["nc"]: logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml["nc"] = nc # override yaml value if anchors: logger.info(f"Overriding model.yaml anchors with anchors={anchors}") self.yaml["anchors"] = round(anchors) # override yaml value self.model, self.save = parse_model( deepcopy(self.yaml), ch=[ch] ) # model, savelist self.names = [str(i) for i in range(self.yaml["nc"])] # default names # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) # Build strides, anchors m = self.model[-1] # Detect() if isinstance(m, Detect): s = 256 # 2x min stride m.stride = torch.tensor( [s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))] ) # forward m.anchors /= m.stride.view(-1, 1, 1) check_anchor_order(m) self.stride = m.stride self._initialize_biases() # only run once # print('Strides: %s' % m.stride.tolist()) if isinstance(m, IDetect): s = 256 # 2x min stride m.stride = torch.tensor( [s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))] ) # forward m.anchors /= m.stride.view(-1, 1, 1) check_anchor_order(m) self.stride = m.stride self._initialize_biases() # only run once # print('Strides: %s' % m.stride.tolist()) if isinstance(m, IAuxDetect): s = 256 # 2x min stride m.stride = torch.tensor( [s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))[:4]] ) # forward # print(m.stride) m.anchors /= m.stride.view(-1, 1, 1) check_anchor_order(m) self.stride = m.stride self._initialize_aux_biases() # only run once # print('Strides: %s' % m.stride.tolist()) if isinstance(m, IBin): s = 256 # 2x min stride m.stride = torch.tensor( [s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))] ) # forward m.anchors /= m.stride.view(-1, 1, 1) check_anchor_order(m) self.stride = m.stride self._initialize_biases_bin() # only run once # print('Strides: %s' % m.stride.tolist()) # Init weights, biases initialize_weights(self) self.info() logger.info("") def forward(self, x, augment=False, profile=False): if augment: img_size = x.shape[-2:] # height, width s = [1, 0.83, 0.67] # scales f = [None, 3, None] # flips (2-ud, 3-lr) y = [] # outputs for si, fi in zip(s, f): xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) yi = self.forward_once(xi)[0] # forward # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save yi[..., :4] /= si # de-scale if fi == 2: yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud elif fi == 3: yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr y.append(yi) return torch.cat(y, 1), None # augmented inference, train else: return self.forward_once(x, profile) # single-scale inference, train def forward_once(self, x, profile=False): y, dt = [], [] # outputs for m in self.model: if m.f != -1: # if not from previous layer x = ( y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] ) # from earlier layers if not hasattr(self, "traced"): self.traced = False if self.traced: if ( isinstance(m, Detect) or isinstance(m, IDetect) or isinstance(m, IAuxDetect) ): break if profile: c = isinstance(m, (Detect, IDetect, IAuxDetect, IBin)) o = ( thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1e9 * 2 if thop else 0 ) # FLOPS for _ in range(10): m(x.copy() if c else x) t = time_synchronized() for _ in range(10): m(x.copy() if c else x) dt.append((time_synchronized() - t) * 100) print("%10.1f%10.0f%10.1fms %-40s" % (o, m.np, dt[-1], m.type)) x = m(x) # run y.append(x if m.i in self.save else None) # save output if profile: print("%.1fms total" % sum(dt)) return x def _initialize_biases( self, cf=None ): # initialize biases into Detect(), cf is class frequency # https://arxiv.org/abs/1708.02002 section 3.3 # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. m = self.model[-1] # Detect() module for mi, s in zip(m.m, m.stride): # from b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) b.data[:, 4] += math.log( 8 / (640 / s) ** 2 ) # obj (8 objects per 640 image) b.data[:, 5:] += ( math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) ) # cls mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) def _initialize_aux_biases( self, cf=None ): # initialize biases into Detect(), cf is class frequency # https://arxiv.org/abs/1708.02002 section 3.3 # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. m = self.model[-1] # Detect() module for mi, mi2, s in zip(m.m, m.m2, m.stride): # from b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) b.data[:, 4] += math.log( 8 / (640 / s) ** 2 ) # obj (8 objects per 640 image) b.data[:, 5:] += ( math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) ) # cls mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) b2 = mi2.bias.view(m.na, -1) # conv.bias(255) to (3,85) b2.data[:, 4] += math.log( 8 / (640 / s) ** 2 ) # obj (8 objects per 640 image) b2.data[:, 5:] += ( math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) ) # cls mi2.bias = torch.nn.Parameter(b2.view(-1), requires_grad=True) def _initialize_biases_bin( self, cf=None ): # initialize biases into Detect(), cf is class frequency # https://arxiv.org/abs/1708.02002 section 3.3 # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. m = self.model[-1] # Bin() module bc = m.bin_count for mi, s in zip(m.m, m.stride): # from b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) old = b[:, (0, 1, 2, bc + 3)].data obj_idx = 2 * bc + 4 b[:, :obj_idx].data += math.log(0.6 / (bc + 1 - 0.99)) b[:, obj_idx].data += math.log( 8 / (640 / s) ** 2 ) # obj (8 objects per 640 image) b[:, (obj_idx + 1) :].data += ( math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) ) # cls b[:, (0, 1, 2, bc + 3)].data = old mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) def _print_biases(self): m = self.model[-1] # Detect() module for mi in m.m: # from b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) print( ("%6g Conv2d.bias:" + "%10.3g" * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()) ) # def _print_weights(self): # for m in self.model.modules(): # if type(m) is Bottleneck: # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers print("Fusing layers... ") for m in self.model.modules(): if isinstance(m, RepConv): # print(f" fuse_repvgg_block") m.fuse_repvgg_block() elif isinstance(m, RepConv_OREPA): # print(f" switch_to_deploy") m.switch_to_deploy() elif type(m) is Conv and hasattr(m, "bn"): m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv delattr(m, "bn") # remove batchnorm m.forward = m.fuseforward # update forward self.info() return self def nms(self, mode=True): # add or remove NMS module present = type(self.model[-1]) is NMS # last layer is NMS if mode and not present: print("Adding NMS... ") m = NMS() # module m.f = -1 # from m.i = self.model[-1].i + 1 # index self.model.add_module(name="%s" % m.i, module=m) # add self.eval() elif not mode and present: print("Removing NMS... ") self.model = self.model[:-1] # remove return self def autoshape(self): # add autoShape module print("Adding autoShape... ") m = autoShape(self) # wrap model copy_attr( m, self, include=("yaml", "nc", "hyp", "names", "stride"), exclude=() ) # copy attributes return m def info(self, verbose=False, img_size=640): # print model information model_info(self, verbose, img_size) def parse_model(d, ch): # model_dict, input_channels(3) logger.info( "\n%3s%18s%3s%10s %-40s%-30s" % ("", "from", "n", "params", "module", "arguments") ) anchors, nc, gd, gw = ( d["anchors"], d["nc"], d["depth_multiple"], d["width_multiple"], ) na = ( (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors ) # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate( d["backbone"] + d["head"] ): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except: pass n = max(round(n * gd), 1) if n > 1 else n # depth gain if m in [ nn.Conv2d, Conv, RobustConv, RobustConv2, DWConv, GhostConv, RepConv, RepConv_OREPA, DownC, SPP, SPPF, SPPCSPC, GhostSPPCSPC, MixConv2d, Focus, Stem, GhostStem, CrossConv, Bottleneck, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC, RepBottleneck, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC, Res, ResCSPA, ResCSPB, ResCSPC, RepRes, RepResCSPA, RepResCSPB, RepResCSPC, ResX, ResXCSPA, ResXCSPB, ResXCSPC, RepResX, RepResXCSPA, RepResXCSPB, RepResXCSPC, Ghost, GhostCSPA, GhostCSPB, GhostCSPC, SwinTransformerBlock, STCSPA, STCSPB, STCSPC, SwinTransformer2Block, ST2CSPA, ST2CSPB, ST2CSPC, ]: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [ DownC, SPPCSPC, GhostSPPCSPC, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC, ResCSPA, ResCSPB, ResCSPC, RepResCSPA, RepResCSPB, RepResCSPC, ResXCSPA, ResXCSPB, ResXCSPC, RepResXCSPA, RepResXCSPB, RepResXCSPC, GhostCSPA, GhostCSPB, GhostCSPC, STCSPA, STCSPB, STCSPC, ST2CSPA, ST2CSPB, ST2CSPC, ]: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x] for x in f]) elif m is Chuncat: c2 = sum([ch[x] for x in f]) elif m is Shortcut: c2 = ch[f[0]] elif m is Foldcut: c2 = ch[f] // 2 elif m in [Detect, IDetect, IAuxDetect, IBin]: args.append([ch[x] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is ReOrg: c2 = ch[f] * 4 elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 else: c2 = ch[f] m_ = ( nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) ) # module t = str(m)[8:-2].replace("__main__.", "") # module type np = sum([x.numel() for x in m_.parameters()]) # number params m_.i, m_.f, m_.type, m_.np = ( i, f, t, np, ) # attach index, 'from' index, type, number params logger.info("%3s%18s%3s%10.0f %-40s%-30s" % (i, f, n, np, t, args)) # print save.extend( x % i for x in ([f] if isinstance(f, int) else f) if x != -1 ) # append to savelist layers.append(m_) if i == 0: ch = [] ch.append(c2) return nn.Sequential(*layers), sorted(save) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--cfg", type=str, default="yolor-csp-c.yaml", help="model.yaml" ) parser.add_argument( "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" ) parser.add_argument("--profile", action="store_true", help="profile model speed") opt = parser.parse_args() opt.cfg = check_file(opt.cfg) # check file set_logging() device = select_device(opt.device) # Create model model = Model(opt.cfg).to(device) model.train() if opt.profile: img = torch.rand(1, 3, 640, 640).to(device) y = model(img, profile=True)