Puppet-Master / svd.py
liray's picture
Init
647bfef
raw
history blame
62.1 kB
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union, Any, Callable
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import UNet2DConditionLoadersMixin
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import is_torch_version
from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unets.unet_3d_blocks import (
UNetMidBlockSpatioTemporal,
get_down_block as gdb,
get_up_block as gub,
)
from diffusers.models.resnet import (
Downsample2D,
SpatioTemporalResBlock,
Upsample2D,
)
from diffusers.models.transformers.transformer_temporal import TransformerSpatioTemporalModel
from diffusers.models.attention_processor import Attention
from diffusers.utils import deprecate
from diffusers.utils.import_utils import is_xformers_available
from network_utils import DragEmbedding, get_2d_sincos_pos_embed
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
if is_xformers_available():
import xformers
import xformers.ops
class AllToFirstXFormersAttnProcessor:
r"""
Processor for implementing memory efficient attention using xFormers.
Args:
attention_op (`Callable`, *optional*, defaults to `None`):
The base
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
operator.
"""
def __init__(self, attention_op: Optional[Callable] = None):
self.attention_op = attention_op
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, key_tokens, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
assert encoder_hidden_states is None
attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size)
if attention_mask is not None:
# expand our mask's singleton query_tokens dimension:
# [batch*heads, 1, key_tokens] ->
# [batch*heads, query_tokens, key_tokens]
# so that it can be added as a bias onto the attention scores that xformers computes:
# [batch*heads, query_tokens, key_tokens]
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
_, query_tokens, _ = hidden_states.shape
attention_mask = attention_mask.expand(-1, query_tokens, -1)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states.view(-1, 14, *hidden_states.shape[1:])[:, 0])[:, None].expand(-1, 14, -1, -1).flatten(0, 1)
value = attn.to_v(hidden_states.view(-1, 14, *hidden_states.shape[1:])[:, 0])[:, None].expand(-1, 14, -1, -1).flatten(0, 1)
query = attn.head_to_batch_dim(query).contiguous()
key = attn.head_to_batch_dim(key).contiguous()
value = attn.head_to_batch_dim(value).contiguous()
hidden_states = xformers.ops.memory_efficient_attention(
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
)
hidden_states = hidden_states.to(query.dtype)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class CrossAttnDownBlockSpatioTemporalWithFlow(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
flow_channels: int,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
add_downsample: bool = True,
num_frames: int = 14,
pos_embed_dim: int = 64,
drag_token_cross_attn: bool = True,
use_modulate: bool = True,
drag_embedder_out_channels = (256, 320, 320),
num_max_drags: int = 5,
):
super().__init__()
resnets = []
attentions = []
flow_convs = []
if drag_token_cross_attn:
drag_token_mlps = []
self.num_max_drags = num_max_drags
self.num_frames = num_frames
self.pos_embed_dim = pos_embed_dim
self.drag_token_cross_attn = drag_token_cross_attn
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
self.use_modulate = use_modulate
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=1e-6,
)
)
attentions.append(
TransformerSpatioTemporalModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
)
)
flow_convs.append(
DragEmbedding(
conditioning_channels=flow_channels,
conditioning_embedding_channels=out_channels * 2 if use_modulate else out_channels,
block_out_channels = drag_embedder_out_channels,
)
)
if drag_token_cross_attn:
drag_token_mlps.append(
nn.Sequential(
nn.Linear(pos_embed_dim * 2 + out_channels * 2, cross_attention_dim),
nn.SiLU(),
nn.Linear(cross_attention_dim, cross_attention_dim),
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.flow_convs = nn.ModuleList(flow_convs)
if drag_token_cross_attn:
self.drag_token_mlps = nn.ModuleList(drag_token_mlps)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=1,
name="op",
)
]
)
else:
self.downsamplers = None
self.pos_embedding = {res: torch.tensor(get_2d_sincos_pos_embed(self.pos_embed_dim, res)) for res in [32, 16, 8, 4, 2]}
self.pos_embedding_prepared = False
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
flow: Optional[torch.Tensor] = None,
drag_original: Optional[torch.Tensor] = None, # (batch_frame, num_points, 4)
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
output_states = ()
batch_frame = hidden_states.shape[0]
if self.drag_token_cross_attn:
encoder_hidden_states_ori = encoder_hidden_states
if not self.pos_embedding_prepared:
for res in self.pos_embedding:
self.pos_embedding[res] = self.pos_embedding[res].to(hidden_states)
self.pos_embedding_prepared = True
blocks = list(zip(self.resnets, self.attentions, self.flow_convs))
for bid, (resnet, attn, flow_conv) in enumerate(blocks):
if self.training and self.gradient_checkpointing: # TODO
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
**ckpt_kwargs,
)
if flow is not None:
# flow shape is (batch_frame, 40, h, w)
drags = flow.view(-1, self.num_frames, *flow.shape[1:])
drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10
drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w
invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5))
if self.use_modulate:
scale, shift = flow_conv(flow).chunk(2, dim=1)
else:
scale = 0
shift = flow_conv(flow)
hidden_states = hidden_states * (1 + scale) + shift
# print(self.drag_token_cross_attn)
if self.drag_token_cross_attn:
drag_token_mlp = self.drag_token_mlps[bid]
pos_embed = self.pos_embedding[scale.shape[-1]]
pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2)
grid = (drag_original[..., :2] * 2 - 1)[:, None]
grid_end = (drag_original[..., 2:] * 2 - 1)[:, None]
drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1)
drag_token_out = drag_token_mlp(drag_token_in)
# Mask the invalid drags
drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1)
drag_token_out = drag_token_out.permute(2, 0, 1, 3)
drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0)
drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1)
encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
if flow is not None:
# flow shape is (batch_frame, 40, h, w)
drags = flow.view(-1, self.num_frames, *flow.shape[1:])
drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10
drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w
invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5))
if self.use_modulate:
scale, shift = flow_conv(flow).chunk(2, dim=1)
else:
scale = 0
shift = flow_conv(flow)
hidden_states = hidden_states * (1 + scale) + shift
if self.drag_token_cross_attn:
drag_token_mlp = self.drag_token_mlps[bid]
pos_embed = self.pos_embedding[scale.shape[-1]]
pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2)
grid = (drag_original[..., :2] * 2 - 1)[:, None]
grid_end = (drag_original[..., 2:] * 2 - 1)[:, None]
drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1)
drag_token_out = drag_token_mlp(drag_token_in)
# Mask the invalid drags
drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1)
drag_token_out = drag_token_out.permute(2, 0, 1, 3)
drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0)
drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1)
encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
class CrossAttnUpBlockSpatioTemporalWithFlow(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
flow_channels: int,
resolution_idx: Optional[int] = None,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
resnet_eps: float = 1e-6,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
add_upsample: bool = True,
num_frames: int = 14,
pos_embed_dim: int = 64,
drag_token_cross_attn: bool = True,
use_modulate: bool = True,
drag_embedder_out_channels = (256, 320, 320),
num_max_drags: int = 5,
):
super().__init__()
resnets = []
attentions = []
flow_convs = []
if drag_token_cross_attn:
drag_token_mlps = []
self.num_max_drags = num_max_drags
self.drag_token_cross_attn = drag_token_cross_attn
self.num_frames = num_frames
self.pos_embed_dim = pos_embed_dim
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
self.use_modulate = use_modulate
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
)
)
attentions.append(
TransformerSpatioTemporalModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
)
)
flow_convs.append(
DragEmbedding(
conditioning_channels=flow_channels,
conditioning_embedding_channels=out_channels * 2 if use_modulate else out_channels,
block_out_channels = drag_embedder_out_channels,
)
)
if drag_token_cross_attn:
drag_token_mlps.append(
nn.Sequential(
nn.Linear(pos_embed_dim * 2 + out_channels * 2, cross_attention_dim),
nn.SiLU(),
nn.Linear(cross_attention_dim, cross_attention_dim),
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.flow_convs = nn.ModuleList(flow_convs)
if drag_token_cross_attn:
self.drag_token_mlps = nn.ModuleList(drag_token_mlps)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
self.pos_embedding = {res: torch.tensor(get_2d_sincos_pos_embed(pos_embed_dim, res)) for res in [32, 16, 8, 4, 2]}
self.pos_embedding_prepared = False
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
flow: Optional[torch.Tensor] = None,
drag_original: Optional[torch.Tensor] = None, # (batch_frame, num_points, 4)
) -> torch.FloatTensor:
batch_frame = hidden_states.shape[0]
if self.drag_token_cross_attn:
encoder_hidden_states_ori = encoder_hidden_states
if not self.pos_embedding_prepared:
for res in self.pos_embedding:
self.pos_embedding[res] = self.pos_embedding[res].to(hidden_states)
self.pos_embedding_prepared = True
for bid, (resnet, attn, flow_conv) in enumerate(zip(self.resnets, self.attentions, self.flow_convs)):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing: # TODO
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
**ckpt_kwargs,
)
if flow is not None:
# flow shape is (batch_frame, 40, h, w)
drags = flow.view(-1, self.num_frames, *flow.shape[1:])
drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10
drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w
invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5))
if self.use_modulate:
scale, shift = flow_conv(flow).chunk(2, dim=1)
else:
scale = 0
shift = flow_conv(flow)
hidden_states = hidden_states * (1 + scale) + shift
if self.drag_token_cross_attn:
drag_token_mlp = self.drag_token_mlps[bid]
pos_embed = self.pos_embedding[scale.shape[-1]]
pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2)
grid = (drag_original[..., :2] * 2 - 1)[:, None]
grid_end = (drag_original[..., 2:] * 2 - 1)[:, None]
drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1)
drag_token_out = drag_token_mlp(drag_token_in)
# Mask the invalid drags
drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1)
drag_token_out = drag_token_out.permute(2, 0, 1, 3)
drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0)
drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1)
encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
if flow is not None:
# flow shape is (batch_frame, 40, h, w)
drags = flow.view(-1, self.num_frames, *flow.shape[1:])
drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10
drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w
invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5))
if self.use_modulate:
scale, shift = flow_conv(flow).chunk(2, dim=1)
else:
scale = 0
shift = flow_conv(flow)
hidden_states = hidden_states * (1 + scale) + shift
if self.drag_token_cross_attn:
drag_token_mlp = self.drag_token_mlps[bid]
pos_embed = self.pos_embedding[scale.shape[-1]]
pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2)
grid = (drag_original[..., :2] * 2 - 1)[:, None]
grid_end = (drag_original[..., 2:] * 2 - 1)[:, None]
drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2)
drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1)
drag_token_out = drag_token_mlp(drag_token_in)
# Mask the invalid drags
drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1)
drag_token_out = drag_token_out.permute(2, 0, 1, 3)
drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0)
drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1)
encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
def get_down_block(
with_concatenated_flow: bool = False,
*args,
**kwargs,
):
NEEDED_KEYS = [
"in_channels",
"out_channels",
"temb_channels",
"flow_channels",
"num_layers",
"transformer_layers_per_block",
"num_attention_heads",
"cross_attention_dim",
"add_downsample",
"pos_embed_dim",
'use_modulate',
"drag_token_cross_attn",
"drag_embedder_out_channels",
"num_max_drags",
]
if not with_concatenated_flow or args[0] == "DownBlockSpatioTemporal":
kwargs.pop("flow_channels", None)
kwargs.pop("pos_embed_dim", None)
kwargs.pop("use_modulate", None)
kwargs.pop("drag_token_cross_attn", None)
kwargs.pop("drag_embedder_out_channels", None)
kwargs.pop("num_max_drags", None)
return gdb(*args, **kwargs)
elif args[0] == "CrossAttnDownBlockSpatioTemporal":
for key in list(kwargs.keys()):
if key not in NEEDED_KEYS:
kwargs.pop(key, None)
return CrossAttnDownBlockSpatioTemporalWithFlow(*args[1:], **kwargs)
else:
raise ValueError(f"Unknown block type {args[0]}")
def get_up_block(
with_concatenated_flow: bool = False,
*args,
**kwargs,
):
NEEDED_KEYS = [
"in_channels",
"out_channels",
"prev_output_channel",
"temb_channels",
"flow_channels",
"resolution_idx",
"num_layers",
"transformer_layers_per_block",
"resnet_eps",
"num_attention_heads",
"cross_attention_dim",
"add_upsample",
"pos_embed_dim",
"use_modulate",
"drag_token_cross_attn",
"drag_embedder_out_channels",
"num_max_drags",
]
if not with_concatenated_flow or args[0] == "UpBlockSpatioTemporal":
kwargs.pop("flow_channels", None)
kwargs.pop("pos_embed_dim", None)
kwargs.pop("use_modulate", None)
kwargs.pop("drag_token_cross_attn", None)
kwargs.pop("drag_embedder_out_channels", None)
kwargs.pop("num_max_drags", None)
return gub(*args, **kwargs)
elif args[0] == "CrossAttnUpBlockSpatioTemporal":
for key in list(kwargs.keys()):
if key not in NEEDED_KEYS:
kwargs.pop(key, None)
return CrossAttnUpBlockSpatioTemporalWithFlow(*args[1:], **kwargs)
else:
raise ValueError(f"Unknown block type {args[0]}")
@dataclass
class UNetSpatioTemporalConditionOutput(BaseOutput):
"""
The output of [`UNetSpatioTemporalConditionModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
"""
sample: torch.FloatTensor = None
class UNetDragSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
r"""
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and
returns a sample shaped output.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
Height and width of input/output sample.
in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample.
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`):
The tuple of downsample blocks to use.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`):
The tuple of upsample blocks to use.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
The tuple of output channels for each block.
addition_time_embed_dim: (`int`, defaults to 256):
Dimension to to encode the additional time ids.
projection_class_embeddings_input_dim (`int`, defaults to 768):
The dimension of the projection of encoded `added_time_ids`.
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
The dimension of the cross attention features.
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
[`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`],
[`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`],
[`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`].
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`):
The number of attention heads.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: Optional[int] = None,
in_channels: int = 8,
out_channels: int = 4,
down_block_types: Tuple[str] = (
"CrossAttnDownBlockSpatioTemporal",
"CrossAttnDownBlockSpatioTemporal",
"CrossAttnDownBlockSpatioTemporal",
"DownBlockSpatioTemporal",
),
up_block_types: Tuple[str] = (
"UpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
),
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
addition_time_embed_dim: int = 256,
projection_class_embeddings_input_dim: int = 768,
layers_per_block: Union[int, Tuple[int]] = 2,
cross_attention_dim: Union[int, Tuple[int]] = 1024,
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 20, 20),
num_frames: int = 25,
num_drags: int = 10,
cond_dropout_prob: float = 0.1,
pos_embed_dim: int = 64,
drag_token_cross_attn: bool = True,
use_modulate: bool = True,
drag_embedder_out_channels = (256, 320, 320),
cross_attn_with_ref: bool = True,
double_batch: bool = False,
):
super().__init__()
self.sample_size = sample_size
self.cond_dropout_prob = cond_dropout_prob
self.drag_token_cross_attn = drag_token_cross_attn
self.pos_embed_dim = pos_embed_dim
self.use_modulate = use_modulate
self.cross_attn_with_ref = cross_attn_with_ref
self.double_batch = double_batch
flow_channels = 6 * num_drags
# Check inputs
if len(down_block_types) != len(up_block_types):
raise ValueError(
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
)
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
)
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
)
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
)
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
)
# input
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[0],
kernel_size=3,
padding=1,
)
# time
time_embed_dim = block_out_channels[0] * 4
self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
self.down_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
if isinstance(num_attention_heads, int):
num_attention_heads = (num_attention_heads,) * len(down_block_types)
if isinstance(cross_attention_dim, int):
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
if isinstance(layers_per_block, int):
layers_per_block = [layers_per_block] * len(down_block_types)
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
blocks_time_embed_dim = time_embed_dim
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
True,
down_block_type,
num_layers=layers_per_block[i],
transformer_layers_per_block=transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
temb_channels=blocks_time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=1e-5,
cross_attention_dim=cross_attention_dim[i],
num_attention_heads=num_attention_heads[i],
resnet_act_fn="silu",
flow_channels=flow_channels,
pos_embed_dim=pos_embed_dim,
use_modulate=use_modulate,
drag_token_cross_attn=drag_token_cross_attn,
drag_embedder_out_channels=drag_embedder_out_channels,
num_max_drags=num_drags,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlockSpatioTemporal(
block_out_channels[-1],
temb_channels=blocks_time_embed_dim,
transformer_layers_per_block=transformer_layers_per_block[-1],
cross_attention_dim=cross_attention_dim[-1],
num_attention_heads=num_attention_heads[-1],
)
# count how many layers upsample the images
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_num_attention_heads = list(reversed(num_attention_heads))
reversed_layers_per_block = list(reversed(layers_per_block))
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
True,
up_block_type,
num_layers=reversed_layers_per_block[i] + 1,
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=blocks_time_embed_dim,
add_upsample=add_upsample,
resnet_eps=1e-5,
resolution_idx=i,
cross_attention_dim=reversed_cross_attention_dim[i],
num_attention_heads=reversed_num_attention_heads[i],
resnet_act_fn="silu",
flow_channels=flow_channels,
pos_embed_dim=pos_embed_dim,
use_modulate=use_modulate,
drag_token_cross_attn=drag_token_cross_attn,
drag_embedder_out_channels=drag_embedder_out_channels,
num_max_drags=num_drags,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(
block_out_channels[0],
out_channels,
kernel_size=3,
padding=1,
)
self.num_drags = num_drags
self.pos_embedding = {res: torch.tensor(get_2d_sincos_pos_embed(self.pos_embed_dim, res)) for res in [32, 16, 8, 4, 2]}
self.pos_embedding_prepared = False
@property
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(
name: str,
module: torch.nn.Module,
processors: Dict[str, AttentionProcessor],
):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
"""
Sets the attention processor to use [feed forward
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
Parameters:
chunk_size (`int`, *optional*):
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
over each tensor of dim=`dim`.
dim (`int`, *optional*, defaults to `0`):
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
or dim=1 (sequence length).
"""
if dim not in [0, 1]:
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
# By default chunk size is 1
chunk_size = chunk_size or 1
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, chunk_size, dim)
def _convert_drag_to_concatting_image(self, drags: torch.Tensor, current_resolution: int) -> torch.Tensor:
batch_size, num_frames, num_points, _ = drags.shape
num_channels = 6
concatting_image = -torch.ones(
batch_size, num_frames, num_channels * num_points, current_resolution, current_resolution
).to(drags)
not_all_zeros = drags.any(dim=-1).repeat_interleave(num_channels, dim=-1)[..., None, None]
y_grid, x_grid = torch.meshgrid(torch.arange(current_resolution), torch.arange(current_resolution), indexing='ij')
y_grid = y_grid.to(drags)[None, None, None] # (1, 1, 1, res, res)
x_grid = x_grid.to(drags)[None, None, None] # (1, 1, 1, res, res)
x0 = (drags[..., 0] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
x_src = (drags[..., 0] * current_resolution - x0)[..., None, None] # (batch, num_frames, num_points, 1, 1)
x0 = x0[..., None, None] # (batch, num_frames, num_points, 1, 1)
x0 = torch.stack([
x0, x0,
torch.zeros_like(x0) - 1, torch.zeros_like(x0) - 1,
torch.zeros_like(x0) - 1, torch.zeros_like(x0) - 1,
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
y0 = (drags[..., 1] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
y_src = (drags[..., 1] * current_resolution - y0)[..., None, None] # (batch, num_frames, num_points, 1, 1)
y0 = y0[..., None, None] # (batch, num_frames, num_points, 1, 1)
y0 = torch.stack([
y0, y0,
torch.zeros_like(y0) - 1, torch.zeros_like(y0) - 1,
torch.zeros_like(y0) - 1, torch.zeros_like(y0) - 1,
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
x1 = (drags[..., 2] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
x_tgt = (drags[..., 2] * current_resolution - x1)[..., None, None] # (batch, num_frames, num_points, 1, 1)
x1 = x1[..., None, None] # (batch, num_frames, num_points, 1, 1)
x1 = torch.stack([
torch.zeros_like(x1) - 1, torch.zeros_like(x1) - 1,
x1, x1,
torch.zeros_like(x1) - 1, torch.zeros_like(x1) - 1
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
y1 = (drags[..., 3] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
y_tgt = (drags[..., 3] * current_resolution - y1)[..., None, None] # (batch, num_frames, num_points, 1, 1)
y1 = y1[..., None, None] # (batch, num_frames, num_points, 1, 1)
y1 = torch.stack([
torch.zeros_like(y1) - 1, torch.zeros_like(y1) - 1,
y1, y1,
torch.zeros_like(y1) - 1, torch.zeros_like(y1) - 1
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
drags_final = drags[:, -1:, :, :].expand_as(drags)
x_final = (drags_final[..., 2] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
x_final_tgt = (drags_final[..., 2] * current_resolution - x_final)[..., None, None] # (batch, num_frames, num_points, 1, 1)
x_final = x_final[..., None, None] # (batch, num_frames, num_points, 1, 1)
x_final = torch.stack([
torch.zeros_like(x_final) - 1, torch.zeros_like(x_final) - 1,
torch.zeros_like(x_final) - 1, torch.zeros_like(x_final) - 1,
x_final, x_final
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
y_final = (drags_final[..., 3] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
y_final_tgt = (drags_final[..., 3] * current_resolution - y_final)[..., None, None] # (batch, num_frames, num_points, 1, 1)
y_final = y_final[..., None, None] # (batch, num_frames, num_points, 1, 1)
y_final = torch.stack([
torch.zeros_like(y_final) - 1, torch.zeros_like(y_final) - 1,
torch.zeros_like(y_final) - 1, torch.zeros_like(y_final) - 1,
y_final, y_final
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
value_image = torch.stack([
x_src, y_src,
x_tgt, y_tgt,
x_final_tgt, y_final_tgt
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1)
value_image = value_image.expand_as(concatting_image)
start_mask = (x_grid == x0) & (y_grid == y0) & not_all_zeros
end_mask = (x_grid == x1) & (y_grid == y1) & not_all_zeros
final_mask = (x_grid == x_final) & (y_grid == y_final) & not_all_zeros
concatting_image[start_mask] = value_image[start_mask]
concatting_image[end_mask] = value_image[end_mask]
concatting_image[final_mask] = value_image[final_mask]
return concatting_image
def zero_init(self):
for block in self.down_blocks:
if hasattr(block, "flow_convs"):
for flow_conv in block.flow_convs:
try:
nn.init.constant_(flow_conv.conv_out.weight, 0)
nn.init.constant_(flow_conv.conv_out.bias, 0)
except:
nn.init.constant_(flow_conv.weight, 0)
for block in self.up_blocks:
if hasattr(block, "flow_convs"):
for flow_conv in block.flow_convs:
try:
nn.init.constant_(flow_conv.conv_out.weight, 0)
nn.init.constant_(flow_conv.conv_out.bias, 0)
except:
nn.init.constant_(flow_conv.weight, 0)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
image_latents: torch.FloatTensor,
encoder_hidden_states: torch.Tensor,
added_time_ids: torch.Tensor,
drags: torch.Tensor,
force_drop_ids: Optional[torch.Tensor] = None,
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]:
r"""
The [`UNetSpatioTemporalConditionModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
image_latents (`torch.FloatTensor`):
The clean conditioning tensor of the first frame of the image with shape `(batch, num_channels, height, width)`.
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
encoder_hidden_states (`torch.FloatTensor`):
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
added_time_ids: (`torch.FloatTensor`):
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
embeddings and added to the time embeddings.
drags (`torch.Tensor`):
The drags tensor with shape `(batch, num_frames, num_points, 4)`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead
of a plain tuple.
Returns:
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is
returned, otherwise a `tuple` is returned where the first element is the sample tensor.
"""
batch_size, num_frames = sample.shape[:2]
if not self.pos_embedding_prepared:
for res in self.pos_embedding:
self.pos_embedding[res] = self.pos_embedding[res].to(drags)
self.pos_embedding_prepared = True
# 0. prepare for cfg
drag_drop_ids = None
if (self.training and self.cond_dropout_prob > 0) or force_drop_ids is not None:
if force_drop_ids is None:
drag_drop_ids = torch.rand(batch_size, device=sample.device) < self.cond_dropout_prob
else:
drag_drop_ids = (force_drop_ids == 1)
drags = drags * ~drag_drop_ids[:, None, None, None]
sample = torch.cat([sample, image_latents[:, None].repeat(1, num_frames, 1, 1, 1)], dim=2)
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(batch_size)
if self.cross_attn_with_ref and self.double_batch:
sample_ref = image_latents[:, None].repeat(1, num_frames, 2, 1, 1)
sample_ref[:, :, :4] = sample_ref[:, :, :4] * 0.18215
sample = torch.cat([sample_ref, sample], dim=0)
drags = torch.cat([torch.zeros_like(drags), drags], dim=0)
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states], dim=0)
timesteps = torch.cat([timesteps, timesteps], dim=0)
batch_size *= 2
drag_encodings = {res: self._convert_drag_to_concatting_image(drags, res) for res in [32, 16, 8]}
t_emb = self.time_proj(timesteps)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb)
# Flatten the batch and frames dimensions
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
sample = sample.flatten(0, 1)
# Repeat the embeddings num_video_frames times
# emb: [batch, channels] -> [batch * frames, channels]
emb = emb.repeat_interleave(num_frames, dim=0)
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels]
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0)
# 2. pre-process
sample = self.conv_in(sample)
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device)
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
flow = drag_encodings[sample.shape[-1]]
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
flow=flow.flatten(0, 1),
drag_original=drags.flatten(0, 1),
)
else:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
image_only_indicator=image_only_indicator,
)
down_block_res_samples += res_samples
# 4. mid
sample = self.mid_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
# 5. up
for i, upsample_block in enumerate(self.up_blocks):
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
flow = drag_encodings[sample.shape[-1]]
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
flow=flow.flatten(0, 1),
drag_original=drags.flatten(0, 1),
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
image_only_indicator=image_only_indicator,
)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
# 7. Reshape back to original shape
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:])
if self.cross_attn_with_ref and self.double_batch:
sample = sample[batch_size // 2:]
return sample
if __name__ == "__main__":
puppet_master = UNetDragSpatioTemporalConditionModel(num_drags=5)
state_dict = torch.load("ckpts/0800000-ema.pt", map_location="cpu")
puppet_master.load_state_dict(state_dict, strict=True)