Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
from typing import Dict, Optional, Tuple, Union, Any, Callable | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import UNet2DConditionLoadersMixin | |
from diffusers.utils import BaseOutput, logging | |
from diffusers.utils.torch_utils import is_torch_version | |
from diffusers.models.attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.unets.unet_3d_blocks import ( | |
UNetMidBlockSpatioTemporal, | |
get_down_block as gdb, | |
get_up_block as gub, | |
) | |
from diffusers.models.resnet import ( | |
Downsample2D, | |
SpatioTemporalResBlock, | |
Upsample2D, | |
) | |
from diffusers.models.transformers.transformer_temporal import TransformerSpatioTemporalModel | |
from diffusers.models.attention_processor import Attention | |
from diffusers.utils import deprecate | |
from diffusers.utils.import_utils import is_xformers_available | |
from network_utils import DragEmbedding, get_2d_sincos_pos_embed | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
class AllToFirstXFormersAttnProcessor: | |
r""" | |
Processor for implementing memory efficient attention using xFormers. | |
Args: | |
attention_op (`Callable`, *optional*, defaults to `None`): | |
The base | |
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to | |
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best | |
operator. | |
""" | |
def __init__(self, attention_op: Optional[Callable] = None): | |
self.attention_op = attention_op | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
temb: Optional[torch.FloatTensor] = None, | |
*args, | |
**kwargs, | |
) -> torch.FloatTensor: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
deprecate("scale", "1.0.0", deprecation_message) | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, key_tokens, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
assert encoder_hidden_states is None | |
attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size) | |
if attention_mask is not None: | |
# expand our mask's singleton query_tokens dimension: | |
# [batch*heads, 1, key_tokens] -> | |
# [batch*heads, query_tokens, key_tokens] | |
# so that it can be added as a bias onto the attention scores that xformers computes: | |
# [batch*heads, query_tokens, key_tokens] | |
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us. | |
_, query_tokens, _ = hidden_states.shape | |
attention_mask = attention_mask.expand(-1, query_tokens, -1) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states.view(-1, 14, *hidden_states.shape[1:])[:, 0])[:, None].expand(-1, 14, -1, -1).flatten(0, 1) | |
value = attn.to_v(hidden_states.view(-1, 14, *hidden_states.shape[1:])[:, 0])[:, None].expand(-1, 14, -1, -1).flatten(0, 1) | |
query = attn.head_to_batch_dim(query).contiguous() | |
key = attn.head_to_batch_dim(key).contiguous() | |
value = attn.head_to_batch_dim(value).contiguous() | |
hidden_states = xformers.ops.memory_efficient_attention( | |
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale | |
) | |
hidden_states = hidden_states.to(query.dtype) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class CrossAttnDownBlockSpatioTemporalWithFlow(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
flow_channels: int, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
add_downsample: bool = True, | |
num_frames: int = 14, | |
pos_embed_dim: int = 64, | |
drag_token_cross_attn: bool = True, | |
use_modulate: bool = True, | |
drag_embedder_out_channels = (256, 320, 320), | |
num_max_drags: int = 5, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
flow_convs = [] | |
if drag_token_cross_attn: | |
drag_token_mlps = [] | |
self.num_max_drags = num_max_drags | |
self.num_frames = num_frames | |
self.pos_embed_dim = pos_embed_dim | |
self.drag_token_cross_attn = drag_token_cross_attn | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
self.use_modulate = use_modulate | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=1e-6, | |
) | |
) | |
attentions.append( | |
TransformerSpatioTemporalModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
) | |
) | |
flow_convs.append( | |
DragEmbedding( | |
conditioning_channels=flow_channels, | |
conditioning_embedding_channels=out_channels * 2 if use_modulate else out_channels, | |
block_out_channels = drag_embedder_out_channels, | |
) | |
) | |
if drag_token_cross_attn: | |
drag_token_mlps.append( | |
nn.Sequential( | |
nn.Linear(pos_embed_dim * 2 + out_channels * 2, cross_attention_dim), | |
nn.SiLU(), | |
nn.Linear(cross_attention_dim, cross_attention_dim), | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.flow_convs = nn.ModuleList(flow_convs) | |
if drag_token_cross_attn: | |
self.drag_token_mlps = nn.ModuleList(drag_token_mlps) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
padding=1, | |
name="op", | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.pos_embedding = {res: torch.tensor(get_2d_sincos_pos_embed(self.pos_embed_dim, res)) for res in [32, 16, 8, 4, 2]} | |
self.pos_embedding_prepared = False | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
flow: Optional[torch.Tensor] = None, | |
drag_original: Optional[torch.Tensor] = None, # (batch_frame, num_points, 4) | |
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
output_states = () | |
batch_frame = hidden_states.shape[0] | |
if self.drag_token_cross_attn: | |
encoder_hidden_states_ori = encoder_hidden_states | |
if not self.pos_embedding_prepared: | |
for res in self.pos_embedding: | |
self.pos_embedding[res] = self.pos_embedding[res].to(hidden_states) | |
self.pos_embedding_prepared = True | |
blocks = list(zip(self.resnets, self.attentions, self.flow_convs)) | |
for bid, (resnet, attn, flow_conv) in enumerate(blocks): | |
if self.training and self.gradient_checkpointing: # TODO | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
**ckpt_kwargs, | |
) | |
if flow is not None: | |
# flow shape is (batch_frame, 40, h, w) | |
drags = flow.view(-1, self.num_frames, *flow.shape[1:]) | |
drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10 | |
drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w | |
invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5)) | |
if self.use_modulate: | |
scale, shift = flow_conv(flow).chunk(2, dim=1) | |
else: | |
scale = 0 | |
shift = flow_conv(flow) | |
hidden_states = hidden_states * (1 + scale) + shift | |
# print(self.drag_token_cross_attn) | |
if self.drag_token_cross_attn: | |
drag_token_mlp = self.drag_token_mlps[bid] | |
pos_embed = self.pos_embedding[scale.shape[-1]] | |
pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2) | |
grid = (drag_original[..., :2] * 2 - 1)[:, None] | |
grid_end = (drag_original[..., 2:] * 2 - 1)[:, None] | |
drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1) | |
drag_token_out = drag_token_mlp(drag_token_in) | |
# Mask the invalid drags | |
drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1) | |
drag_token_out = drag_token_out.permute(2, 0, 1, 3) | |
drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0) | |
drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1) | |
encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
return_dict=False, | |
)[0] | |
else: | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
if flow is not None: | |
# flow shape is (batch_frame, 40, h, w) | |
drags = flow.view(-1, self.num_frames, *flow.shape[1:]) | |
drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10 | |
drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w | |
invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5)) | |
if self.use_modulate: | |
scale, shift = flow_conv(flow).chunk(2, dim=1) | |
else: | |
scale = 0 | |
shift = flow_conv(flow) | |
hidden_states = hidden_states * (1 + scale) + shift | |
if self.drag_token_cross_attn: | |
drag_token_mlp = self.drag_token_mlps[bid] | |
pos_embed = self.pos_embedding[scale.shape[-1]] | |
pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2) | |
grid = (drag_original[..., :2] * 2 - 1)[:, None] | |
grid_end = (drag_original[..., 2:] * 2 - 1)[:, None] | |
drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1) | |
drag_token_out = drag_token_mlp(drag_token_in) | |
# Mask the invalid drags | |
drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1) | |
drag_token_out = drag_token_out.permute(2, 0, 1, 3) | |
drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0) | |
drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1) | |
encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
return_dict=False, | |
)[0] | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class CrossAttnUpBlockSpatioTemporalWithFlow(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
flow_channels: int, | |
resolution_idx: Optional[int] = None, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
resnet_eps: float = 1e-6, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
add_upsample: bool = True, | |
num_frames: int = 14, | |
pos_embed_dim: int = 64, | |
drag_token_cross_attn: bool = True, | |
use_modulate: bool = True, | |
drag_embedder_out_channels = (256, 320, 320), | |
num_max_drags: int = 5, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
flow_convs = [] | |
if drag_token_cross_attn: | |
drag_token_mlps = [] | |
self.num_max_drags = num_max_drags | |
self.drag_token_cross_attn = drag_token_cross_attn | |
self.num_frames = num_frames | |
self.pos_embed_dim = pos_embed_dim | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
self.use_modulate = use_modulate | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
SpatioTemporalResBlock( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
) | |
) | |
attentions.append( | |
TransformerSpatioTemporalModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
) | |
) | |
flow_convs.append( | |
DragEmbedding( | |
conditioning_channels=flow_channels, | |
conditioning_embedding_channels=out_channels * 2 if use_modulate else out_channels, | |
block_out_channels = drag_embedder_out_channels, | |
) | |
) | |
if drag_token_cross_attn: | |
drag_token_mlps.append( | |
nn.Sequential( | |
nn.Linear(pos_embed_dim * 2 + out_channels * 2, cross_attention_dim), | |
nn.SiLU(), | |
nn.Linear(cross_attention_dim, cross_attention_dim), | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.flow_convs = nn.ModuleList(flow_convs) | |
if drag_token_cross_attn: | |
self.drag_token_mlps = nn.ModuleList(drag_token_mlps) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.pos_embedding = {res: torch.tensor(get_2d_sincos_pos_embed(pos_embed_dim, res)) for res in [32, 16, 8, 4, 2]} | |
self.pos_embedding_prepared = False | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
flow: Optional[torch.Tensor] = None, | |
drag_original: Optional[torch.Tensor] = None, # (batch_frame, num_points, 4) | |
) -> torch.FloatTensor: | |
batch_frame = hidden_states.shape[0] | |
if self.drag_token_cross_attn: | |
encoder_hidden_states_ori = encoder_hidden_states | |
if not self.pos_embedding_prepared: | |
for res in self.pos_embedding: | |
self.pos_embedding[res] = self.pos_embedding[res].to(hidden_states) | |
self.pos_embedding_prepared = True | |
for bid, (resnet, attn, flow_conv) in enumerate(zip(self.resnets, self.attentions, self.flow_convs)): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: # TODO | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
**ckpt_kwargs, | |
) | |
if flow is not None: | |
# flow shape is (batch_frame, 40, h, w) | |
drags = flow.view(-1, self.num_frames, *flow.shape[1:]) | |
drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10 | |
drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w | |
invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5)) | |
if self.use_modulate: | |
scale, shift = flow_conv(flow).chunk(2, dim=1) | |
else: | |
scale = 0 | |
shift = flow_conv(flow) | |
hidden_states = hidden_states * (1 + scale) + shift | |
if self.drag_token_cross_attn: | |
drag_token_mlp = self.drag_token_mlps[bid] | |
pos_embed = self.pos_embedding[scale.shape[-1]] | |
pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2) | |
grid = (drag_original[..., :2] * 2 - 1)[:, None] | |
grid_end = (drag_original[..., 2:] * 2 - 1)[:, None] | |
drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1) | |
drag_token_out = drag_token_mlp(drag_token_in) | |
# Mask the invalid drags | |
drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1) | |
drag_token_out = drag_token_out.permute(2, 0, 1, 3) | |
drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0) | |
drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1) | |
encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
return_dict=False, | |
)[0] | |
else: | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
if flow is not None: | |
# flow shape is (batch_frame, 40, h, w) | |
drags = flow.view(-1, self.num_frames, *flow.shape[1:]) | |
drags = drags.chunk(self.num_max_drags, dim=2) # (batch, frame, 4, h, w) x 10 | |
drags = torch.stack(drags, dim=0) # 10, batch, frame, 4, h, w | |
invalid_flag = torch.all(drags == -1, dim=(2, 3, 4, 5)) | |
if self.use_modulate: | |
scale, shift = flow_conv(flow).chunk(2, dim=1) | |
else: | |
scale = 0 | |
shift = flow_conv(flow) | |
hidden_states = hidden_states * (1 + scale) + shift | |
if self.drag_token_cross_attn: | |
drag_token_mlp = self.drag_token_mlps[bid] | |
pos_embed = self.pos_embedding[scale.shape[-1]] | |
pos_embed = pos_embed.reshape(1, scale.shape[-1], scale.shape[-1], -1).permute(0, 3, 1, 2) | |
grid = (drag_original[..., :2] * 2 - 1)[:, None] | |
grid_end = (drag_original[..., 2:] * 2 - 1)[:, None] | |
drags_pos_start = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
drags_pos_end = F.grid_sample(pos_embed.repeat(batch_frame, 1, 1, 1), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
features = F.grid_sample(hidden_states.detach(), grid, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
features_end = F.grid_sample(hidden_states.detach(), grid_end, padding_mode="border", mode="bilinear", align_corners=False).squeeze(dim=2) | |
drag_token_in = torch.cat([features, features_end, drags_pos_start, drags_pos_end], dim=1).permute(0, 2, 1) | |
drag_token_out = drag_token_mlp(drag_token_in) | |
# Mask the invalid drags | |
drag_token_out = drag_token_out.view(batch_frame // self.num_frames, self.num_frames, self.num_max_drags, -1) | |
drag_token_out = drag_token_out.permute(2, 0, 1, 3) | |
drag_token_out = drag_token_out.masked_fill(invalid_flag[..., None, None].expand_as(drag_token_out), 0) | |
drag_token_out = drag_token_out.permute(1, 2, 0, 3).flatten(0, 1) | |
encoder_hidden_states = torch.cat([encoder_hidden_states_ori, drag_token_out], dim=1) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
return_dict=False, | |
)[0] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states) | |
return hidden_states | |
def get_down_block( | |
with_concatenated_flow: bool = False, | |
*args, | |
**kwargs, | |
): | |
NEEDED_KEYS = [ | |
"in_channels", | |
"out_channels", | |
"temb_channels", | |
"flow_channels", | |
"num_layers", | |
"transformer_layers_per_block", | |
"num_attention_heads", | |
"cross_attention_dim", | |
"add_downsample", | |
"pos_embed_dim", | |
'use_modulate', | |
"drag_token_cross_attn", | |
"drag_embedder_out_channels", | |
"num_max_drags", | |
] | |
if not with_concatenated_flow or args[0] == "DownBlockSpatioTemporal": | |
kwargs.pop("flow_channels", None) | |
kwargs.pop("pos_embed_dim", None) | |
kwargs.pop("use_modulate", None) | |
kwargs.pop("drag_token_cross_attn", None) | |
kwargs.pop("drag_embedder_out_channels", None) | |
kwargs.pop("num_max_drags", None) | |
return gdb(*args, **kwargs) | |
elif args[0] == "CrossAttnDownBlockSpatioTemporal": | |
for key in list(kwargs.keys()): | |
if key not in NEEDED_KEYS: | |
kwargs.pop(key, None) | |
return CrossAttnDownBlockSpatioTemporalWithFlow(*args[1:], **kwargs) | |
else: | |
raise ValueError(f"Unknown block type {args[0]}") | |
def get_up_block( | |
with_concatenated_flow: bool = False, | |
*args, | |
**kwargs, | |
): | |
NEEDED_KEYS = [ | |
"in_channels", | |
"out_channels", | |
"prev_output_channel", | |
"temb_channels", | |
"flow_channels", | |
"resolution_idx", | |
"num_layers", | |
"transformer_layers_per_block", | |
"resnet_eps", | |
"num_attention_heads", | |
"cross_attention_dim", | |
"add_upsample", | |
"pos_embed_dim", | |
"use_modulate", | |
"drag_token_cross_attn", | |
"drag_embedder_out_channels", | |
"num_max_drags", | |
] | |
if not with_concatenated_flow or args[0] == "UpBlockSpatioTemporal": | |
kwargs.pop("flow_channels", None) | |
kwargs.pop("pos_embed_dim", None) | |
kwargs.pop("use_modulate", None) | |
kwargs.pop("drag_token_cross_attn", None) | |
kwargs.pop("drag_embedder_out_channels", None) | |
kwargs.pop("num_max_drags", None) | |
return gub(*args, **kwargs) | |
elif args[0] == "CrossAttnUpBlockSpatioTemporal": | |
for key in list(kwargs.keys()): | |
if key not in NEEDED_KEYS: | |
kwargs.pop(key, None) | |
return CrossAttnUpBlockSpatioTemporalWithFlow(*args[1:], **kwargs) | |
else: | |
raise ValueError(f"Unknown block type {args[0]}") | |
class UNetSpatioTemporalConditionOutput(BaseOutput): | |
""" | |
The output of [`UNetSpatioTemporalConditionModel`]. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): | |
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
""" | |
sample: torch.FloatTensor = None | |
class UNetDragSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): | |
r""" | |
A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and | |
returns a sample shaped output. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
Height and width of input/output sample. | |
in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample. | |
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`): | |
The tuple of downsample blocks to use. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`): | |
The tuple of upsample blocks to use. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each block. | |
addition_time_embed_dim: (`int`, defaults to 256): | |
Dimension to to encode the additional time ids. | |
projection_class_embeddings_input_dim (`int`, defaults to 768): | |
The dimension of the projection of encoded `added_time_ids`. | |
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): | |
The dimension of the cross attention features. | |
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): | |
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for | |
[`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], | |
[`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`], | |
[`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`]. | |
num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`): | |
The number of attention heads. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 8, | |
out_channels: int = 4, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlockSpatioTemporal", | |
"CrossAttnDownBlockSpatioTemporal", | |
"CrossAttnDownBlockSpatioTemporal", | |
"DownBlockSpatioTemporal", | |
), | |
up_block_types: Tuple[str] = ( | |
"UpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", | |
"CrossAttnUpBlockSpatioTemporal", | |
), | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
addition_time_embed_dim: int = 256, | |
projection_class_embeddings_input_dim: int = 768, | |
layers_per_block: Union[int, Tuple[int]] = 2, | |
cross_attention_dim: Union[int, Tuple[int]] = 1024, | |
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, | |
num_attention_heads: Union[int, Tuple[int]] = (5, 10, 20, 20), | |
num_frames: int = 25, | |
num_drags: int = 10, | |
cond_dropout_prob: float = 0.1, | |
pos_embed_dim: int = 64, | |
drag_token_cross_attn: bool = True, | |
use_modulate: bool = True, | |
drag_embedder_out_channels = (256, 320, 320), | |
cross_attn_with_ref: bool = True, | |
double_batch: bool = False, | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
self.cond_dropout_prob = cond_dropout_prob | |
self.drag_token_cross_attn = drag_token_cross_attn | |
self.pos_embed_dim = pos_embed_dim | |
self.use_modulate = use_modulate | |
self.cross_attn_with_ref = cross_attn_with_ref | |
self.double_batch = double_batch | |
flow_channels = 6 * num_drags | |
# Check inputs | |
if len(down_block_types) != len(up_block_types): | |
raise ValueError( | |
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
) | |
if len(block_out_channels) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
) | |
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | |
) | |
# input | |
self.conv_in = nn.Conv2d( | |
in_channels, | |
block_out_channels[0], | |
kernel_size=3, | |
padding=1, | |
) | |
# time | |
time_embed_dim = block_out_channels[0] * 4 | |
self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0) | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
self.down_blocks = nn.ModuleList([]) | |
self.up_blocks = nn.ModuleList([]) | |
if isinstance(num_attention_heads, int): | |
num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
if isinstance(cross_attention_dim, int): | |
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
if isinstance(layers_per_block, int): | |
layers_per_block = [layers_per_block] * len(down_block_types) | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) | |
blocks_time_embed_dim = time_embed_dim | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
True, | |
down_block_type, | |
num_layers=layers_per_block[i], | |
transformer_layers_per_block=transformer_layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=1e-5, | |
cross_attention_dim=cross_attention_dim[i], | |
num_attention_heads=num_attention_heads[i], | |
resnet_act_fn="silu", | |
flow_channels=flow_channels, | |
pos_embed_dim=pos_embed_dim, | |
use_modulate=use_modulate, | |
drag_token_cross_attn=drag_token_cross_attn, | |
drag_embedder_out_channels=drag_embedder_out_channels, | |
num_max_drags=num_drags, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = UNetMidBlockSpatioTemporal( | |
block_out_channels[-1], | |
temb_channels=blocks_time_embed_dim, | |
transformer_layers_per_block=transformer_layers_per_block[-1], | |
cross_attention_dim=cross_attention_dim[-1], | |
num_attention_heads=num_attention_heads[-1], | |
) | |
# count how many layers upsample the images | |
self.num_upsamplers = 0 | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_num_attention_heads = list(reversed(num_attention_heads)) | |
reversed_layers_per_block = list(reversed(layers_per_block)) | |
reversed_cross_attention_dim = list(reversed(cross_attention_dim)) | |
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
# add upsample block for all BUT final layer | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
up_block = get_up_block( | |
True, | |
up_block_type, | |
num_layers=reversed_layers_per_block[i] + 1, | |
transformer_layers_per_block=reversed_transformer_layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_upsample=add_upsample, | |
resnet_eps=1e-5, | |
resolution_idx=i, | |
cross_attention_dim=reversed_cross_attention_dim[i], | |
num_attention_heads=reversed_num_attention_heads[i], | |
resnet_act_fn="silu", | |
flow_channels=flow_channels, | |
pos_embed_dim=pos_embed_dim, | |
use_modulate=use_modulate, | |
drag_token_cross_attn=drag_token_cross_attn, | |
drag_embedder_out_channels=drag_embedder_out_channels, | |
num_max_drags=num_drags, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5) | |
self.conv_act = nn.SiLU() | |
self.conv_out = nn.Conv2d( | |
block_out_channels[0], | |
out_channels, | |
kernel_size=3, | |
padding=1, | |
) | |
self.num_drags = num_drags | |
self.pos_embedding = {res: torch.tensor(get_2d_sincos_pos_embed(self.pos_embed_dim, res)) for res in [32, 16, 8, 4, 2]} | |
self.pos_embedding_prepared = False | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors( | |
name: str, | |
module: torch.nn.Module, | |
processors: Dict[str, AttentionProcessor], | |
): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
processor = AttnProcessor() | |
else: | |
raise ValueError( | |
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
) | |
self.set_attn_processor(processor) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
""" | |
Sets the attention processor to use [feed forward | |
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
Parameters: | |
chunk_size (`int`, *optional*): | |
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
over each tensor of dim=`dim`. | |
dim (`int`, *optional*, defaults to `0`): | |
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
or dim=1 (sequence length). | |
""" | |
if dim not in [0, 1]: | |
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
# By default chunk size is 1 | |
chunk_size = chunk_size or 1 | |
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, chunk_size, dim) | |
def _convert_drag_to_concatting_image(self, drags: torch.Tensor, current_resolution: int) -> torch.Tensor: | |
batch_size, num_frames, num_points, _ = drags.shape | |
num_channels = 6 | |
concatting_image = -torch.ones( | |
batch_size, num_frames, num_channels * num_points, current_resolution, current_resolution | |
).to(drags) | |
not_all_zeros = drags.any(dim=-1).repeat_interleave(num_channels, dim=-1)[..., None, None] | |
y_grid, x_grid = torch.meshgrid(torch.arange(current_resolution), torch.arange(current_resolution), indexing='ij') | |
y_grid = y_grid.to(drags)[None, None, None] # (1, 1, 1, res, res) | |
x_grid = x_grid.to(drags)[None, None, None] # (1, 1, 1, res, res) | |
x0 = (drags[..., 0] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
x_src = (drags[..., 0] * current_resolution - x0)[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
x0 = x0[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
x0 = torch.stack([ | |
x0, x0, | |
torch.zeros_like(x0) - 1, torch.zeros_like(x0) - 1, | |
torch.zeros_like(x0) - 1, torch.zeros_like(x0) - 1, | |
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
y0 = (drags[..., 1] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
y_src = (drags[..., 1] * current_resolution - y0)[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
y0 = y0[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
y0 = torch.stack([ | |
y0, y0, | |
torch.zeros_like(y0) - 1, torch.zeros_like(y0) - 1, | |
torch.zeros_like(y0) - 1, torch.zeros_like(y0) - 1, | |
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
x1 = (drags[..., 2] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
x_tgt = (drags[..., 2] * current_resolution - x1)[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
x1 = x1[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
x1 = torch.stack([ | |
torch.zeros_like(x1) - 1, torch.zeros_like(x1) - 1, | |
x1, x1, | |
torch.zeros_like(x1) - 1, torch.zeros_like(x1) - 1 | |
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
y1 = (drags[..., 3] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
y_tgt = (drags[..., 3] * current_resolution - y1)[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
y1 = y1[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
y1 = torch.stack([ | |
torch.zeros_like(y1) - 1, torch.zeros_like(y1) - 1, | |
y1, y1, | |
torch.zeros_like(y1) - 1, torch.zeros_like(y1) - 1 | |
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
drags_final = drags[:, -1:, :, :].expand_as(drags) | |
x_final = (drags_final[..., 2] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
x_final_tgt = (drags_final[..., 2] * current_resolution - x_final)[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
x_final = x_final[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
x_final = torch.stack([ | |
torch.zeros_like(x_final) - 1, torch.zeros_like(x_final) - 1, | |
torch.zeros_like(x_final) - 1, torch.zeros_like(x_final) - 1, | |
x_final, x_final | |
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
y_final = (drags_final[..., 3] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
y_final_tgt = (drags_final[..., 3] * current_resolution - y_final)[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
y_final = y_final[..., None, None] # (batch, num_frames, num_points, 1, 1) | |
y_final = torch.stack([ | |
torch.zeros_like(y_final) - 1, torch.zeros_like(y_final) - 1, | |
torch.zeros_like(y_final) - 1, torch.zeros_like(y_final) - 1, | |
y_final, y_final | |
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
value_image = torch.stack([ | |
x_src, y_src, | |
x_tgt, y_tgt, | |
x_final_tgt, y_final_tgt | |
], dim=3).view(batch_size, num_frames, num_channels * num_points, 1, 1) | |
value_image = value_image.expand_as(concatting_image) | |
start_mask = (x_grid == x0) & (y_grid == y0) & not_all_zeros | |
end_mask = (x_grid == x1) & (y_grid == y1) & not_all_zeros | |
final_mask = (x_grid == x_final) & (y_grid == y_final) & not_all_zeros | |
concatting_image[start_mask] = value_image[start_mask] | |
concatting_image[end_mask] = value_image[end_mask] | |
concatting_image[final_mask] = value_image[final_mask] | |
return concatting_image | |
def zero_init(self): | |
for block in self.down_blocks: | |
if hasattr(block, "flow_convs"): | |
for flow_conv in block.flow_convs: | |
try: | |
nn.init.constant_(flow_conv.conv_out.weight, 0) | |
nn.init.constant_(flow_conv.conv_out.bias, 0) | |
except: | |
nn.init.constant_(flow_conv.weight, 0) | |
for block in self.up_blocks: | |
if hasattr(block, "flow_convs"): | |
for flow_conv in block.flow_convs: | |
try: | |
nn.init.constant_(flow_conv.conv_out.weight, 0) | |
nn.init.constant_(flow_conv.conv_out.bias, 0) | |
except: | |
nn.init.constant_(flow_conv.weight, 0) | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
image_latents: torch.FloatTensor, | |
encoder_hidden_states: torch.Tensor, | |
added_time_ids: torch.Tensor, | |
drags: torch.Tensor, | |
force_drop_ids: Optional[torch.Tensor] = None, | |
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]: | |
r""" | |
The [`UNetSpatioTemporalConditionModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`. | |
image_latents (`torch.FloatTensor`): | |
The clean conditioning tensor of the first frame of the image with shape `(batch, num_channels, height, width)`. | |
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
encoder_hidden_states (`torch.FloatTensor`): | |
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`. | |
added_time_ids: (`torch.FloatTensor`): | |
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal | |
embeddings and added to the time embeddings. | |
drags (`torch.Tensor`): | |
The drags tensor with shape `(batch, num_frames, num_points, 4)`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead | |
of a plain tuple. | |
Returns: | |
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`: | |
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is | |
returned, otherwise a `tuple` is returned where the first element is the sample tensor. | |
""" | |
batch_size, num_frames = sample.shape[:2] | |
if not self.pos_embedding_prepared: | |
for res in self.pos_embedding: | |
self.pos_embedding[res] = self.pos_embedding[res].to(drags) | |
self.pos_embedding_prepared = True | |
# 0. prepare for cfg | |
drag_drop_ids = None | |
if (self.training and self.cond_dropout_prob > 0) or force_drop_ids is not None: | |
if force_drop_ids is None: | |
drag_drop_ids = torch.rand(batch_size, device=sample.device) < self.cond_dropout_prob | |
else: | |
drag_drop_ids = (force_drop_ids == 1) | |
drags = drags * ~drag_drop_ids[:, None, None, None] | |
sample = torch.cat([sample, image_latents[:, None].repeat(1, num_frames, 1, 1, 1)], dim=2) | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(batch_size) | |
if self.cross_attn_with_ref and self.double_batch: | |
sample_ref = image_latents[:, None].repeat(1, num_frames, 2, 1, 1) | |
sample_ref[:, :, :4] = sample_ref[:, :, :4] * 0.18215 | |
sample = torch.cat([sample_ref, sample], dim=0) | |
drags = torch.cat([torch.zeros_like(drags), drags], dim=0) | |
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states], dim=0) | |
timesteps = torch.cat([timesteps, timesteps], dim=0) | |
batch_size *= 2 | |
drag_encodings = {res: self._convert_drag_to_concatting_image(drags, res) for res in [32, 16, 8]} | |
t_emb = self.time_proj(timesteps) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb) | |
# Flatten the batch and frames dimensions | |
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width] | |
sample = sample.flatten(0, 1) | |
# Repeat the embeddings num_video_frames times | |
# emb: [batch, channels] -> [batch * frames, channels] | |
emb = emb.repeat_interleave(num_frames, dim=0) | |
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels] | |
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0) | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device) | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
flow = drag_encodings[sample.shape[-1]] | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
flow=flow.flatten(0, 1), | |
drag_original=drags.flatten(0, 1), | |
) | |
else: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
image_only_indicator=image_only_indicator, | |
) | |
down_block_res_samples += res_samples | |
# 4. mid | |
sample = self.mid_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
# 5. up | |
for i, upsample_block in enumerate(self.up_blocks): | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
flow = drag_encodings[sample.shape[-1]] | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
flow=flow.flatten(0, 1), | |
drag_original=drags.flatten(0, 1), | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
image_only_indicator=image_only_indicator, | |
) | |
# 6. post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
# 7. Reshape back to original shape | |
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:]) | |
if self.cross_attn_with_ref and self.double_batch: | |
sample = sample[batch_size // 2:] | |
return sample | |
if __name__ == "__main__": | |
puppet_master = UNetDragSpatioTemporalConditionModel(num_drags=5) | |
state_dict = torch.load("ckpts/0800000-ema.pt", map_location="cpu") | |
puppet_master.load_state_dict(state_dict, strict=True) | |