import gradio as gr import torch import uuid import json import librosa import os import tempfile import soundfile as sf import scipy.io.wavfile as wav from transformers import pipeline, VitsModel, AutoTokenizer, set_seed from nemo.collections.asr.models import EncDecMultiTaskModel # Constants SAMPLE_RATE = 16000 # Hz # load ASR model canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b') # update dcode params decode_cfg = canary_model.cfg.decoding decode_cfg.beam.beam_size = 1 canary_model.change_decoding_strategy(decode_cfg) # load TTS model tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng") tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng") # Function to convert audio to text using ASR def gen_text(audio_filepath, action): if audio_filepath is None: raise gr.Error("Please provide some input audio.") utt_id = uuid.uuid4() with tempfile.TemporaryDirectory() as tmpdir: # Convert to 16 kHz data, sr = librosa.load(audio_filepath, sr=None, mono=True) if sr != SAMPLE_RATE: data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE) converted_audio_filepath = os.path.join(tmpdir, f"{utt_id}.wav") sf.write(converted_audio_filepath, data, SAMPLE_RATE) # Transcribe audio duration = len(data) / SAMPLE_RATE manifest_data = { "audio_filepath": converted_audio_filepath, "taskname": action, "source_lang": "en", "target_lang": "en" if action=="asr" else "fr", "pnc": "no", "answer": "predict", "duration": str(duration), } manifest_filepath = os.path.join(tmpdir, f"{utt_id}.json") with open(manifest_filepath, 'w') as fout: fout.write(json.dumps(manifest_data)) if duration < 40: predicted_text = canary_model.transcribe(manifest_filepath)[0] else: predicted_text = get_buffered_pred_feat_multitaskAED( frame_asr, canary_model.cfg.preprocessor, model_stride_in_secs, canary_model.device, manifest=manifest_filepath, )[0].text return predicted_text # Function to convert text to speech using TTS def gen_speech(text): set_seed(555) # Make it deterministic input_text = tts_tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = tts_model(**input_text) waveform_np = outputs.waveform[0].cpu().numpy() output_file = f"{str(uuid.uuid4())}.wav" wav.write(output_file, rate=tts_model.config.sampling_rate, data=waveform_np) return output_file # Root function for Gradio interface def start_process(audio_filepath): transcription = gen_text(audio_filepath, "asr") print("Done transcribing") translation = gen_text(audio_filepath, "ast") print("Done translation") audio_output_filepath = gen_speech(transcription) print("Done speaking") return transcription, translation, audio_output_filepath # Create Gradio interface playground = gr.Blocks() with playground: with gr.Row(): with gr.Column(): input_audio = gr.Audio(sources=["microphone"], type="filepath", label="Input Audio") with gr.Column(): translated_speech = gr.Audio(type="filepath", label="Generated Speech") with gr.Row(): with gr.Column(): transcipted_text = gr.Textbox(label="Transcription") with gr.Column(): translated_text = gr.Textbox(label="Translation") with gr.Row(): with gr.Column(): submit_button = gr.Button(value="Start Process", variant="primary") with gr.Column(): clear_button = gr.ClearButton(components=[input_audio, transcipted_text, translated_speech, translated_text], value="Clear") submit_button.click(start_process, inputs=[input_audio], outputs=[transcipted_text, translated_text, translated_speech]) playground.launch()