import streamlit as st
import cv2
import numpy as np
import time
import os
from keras.models import load_model
from PIL import Image
import tempfile
# Larger title
st.markdown("
Emotion Detection with Face Recognition
", unsafe_allow_html=True)
# Smaller subtitle
st.markdown("angry, fear, happy, neutral, sad, surprise
", unsafe_allow_html=True)
start = time.time()
# Load the emotion model
@st.cache_resource
def load_emotion_model():
model = load_model('CNN_Model_acc_75.h5') # Ensure this file is in your Space
return model
model = load_emotion_model()
print("time taken to load model: ", time.time() - start)
# Emotion labels
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
# Load known faces (from images in a folder)
known_faces = []
known_names = []
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
def load_known_faces():
folder_path = "known_faces" # Place your folder with known faces here
for image_name in os.listdir(folder_path):
if image_name.endswith(('.jpg', '.jpeg', '.png')):
image_path = os.path.join(folder_path, image_name)
image = cv2.imread(image_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect face in the image
faces = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml').detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
for (x, y, w, h) in faces:
roi_gray = gray[y:y+h, x:x+w]
# We only need the face, so we crop it and store it for training
known_faces.append(roi_gray)
known_names.append(image_name.split('.')[0]) # Assuming file name is the person's name
# Train the recognizer with the known faces
face_recognizer.train(known_faces, np.array([i for i in range(len(known_faces))]))
load_known_faces()
# Face detection using OpenCV
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
img_shape = 48
def process_frame(frame):
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
result_text = "" # Initialize the result text for display
for (x, y, w, h) in faces:
roi_gray = gray_frame[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
face_roi = cv2.resize(roi_color, (img_shape, img_shape)) # Resize to 48x48
face_roi = cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB) # Convert to RGB (3 channels)
face_roi = np.expand_dims(face_roi, axis=0) # Add batch dimension
face_roi = face_roi / 255.0 # Normalize the image
# Emotion detection
predictions = model.predict(face_roi)
emotion = emotion_labels[np.argmax(predictions[0])]
# Face recognition using LBPH
label, confidence = face_recognizer.predict(roi_gray)
name = "Unknown"
if confidence < 100:
name = known_names[label]
# Format the result text as "Name is feeling Emotion"
result_text = f"{name} is feeling {emotion}"
# Draw bounding box and label on the frame
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(frame, result_text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
return frame, result_text
# Video feed
def video_feed(video_source):
frame_placeholder = st.empty() # This placeholder will be used to replace frames in-place
text_placeholder = st.empty() # This placeholder will display the result text
while True:
ret, frame = video_source.read()
if not ret:
break
frame, result_text = process_frame(frame)
# Display the frame in the placeholder
frame_placeholder.image(frame, channels="BGR", use_column_width=True)
# Display the result text in the text placeholder
text_placeholder.markdown(f"{result_text}
", unsafe_allow_html=True)
# Sidebar for video or image upload
upload_choice = st.sidebar.radio("Choose input source", ["Upload Image", "Upload Video", "Camera"])
if upload_choice == "Camera":
# Use Streamlit's built-in camera input widget for capturing images from the webcam
image = st.camera_input("Take a picture")
if image is not None:
# Convert the image to a numpy array
frame = np.array(Image.open(image))
frame, result_text = process_frame(frame)
st.image(frame, caption='Processed Image', use_column_width=True)
st.markdown(f"{result_text}
", unsafe_allow_html=True)
elif upload_choice == "Upload Image":
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg", "gif"])
if uploaded_image:
image = Image.open(uploaded_image)
frame = np.array(image)
frame, result_text = process_frame(frame)
st.image(frame, caption='Processed Image', use_column_width=True)
st.markdown(f"{result_text}
", unsafe_allow_html=True)
elif upload_choice == "Upload Video":
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"])
if uploaded_video:
# Temporarily save the video to disk
with tempfile.NamedTemporaryFile(delete=False) as tfile:
tfile.write(uploaded_video.read())
video_source = cv2.VideoCapture(tfile.name)
video_feed(video_source)
st.sidebar.write("Emotion Labels: Angry, Fear, Happy, Neutral, Sad, Surprise")