from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.vision.all import * # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME" repo_id = "rasaenluis3/e3Modelo" learner = from_pretrained_fastai(repo_id) labels = ['0','1','2','3','4','5'] # Auxiliar def catToValue(cat): if cat == '0': return 'sadness' elif cat == '1': return 'joy' # wonderhoy :) elif cat == '2': return 'love' elif cat == '3': return 'anger' elif cat == '4': return 'fear' elif cat == '5': return 'surprise' else: return str(cat) # Definimos una función que se encarga de llevar a cabo las predicciones def predict(texto): print(texto) pred,pred_idx,probs = learner.predict(texto) si = {catToValue(labels[i]): float(probs[i]) for i in range(len(labels))} print(si) return si # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Textbox(lines=3,label="Escríbeme in english please"), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=False)