import gradio as gr import pandas as pd import numpy as np import pickle def decode_file(file_path): with open(file_path, 'rb') as file: obj = pickle.load(file) return obj model = decode_file('model.pkl') def predict(gender, age, hypertension, ever_married, work_type, heart_disease, avg_glucose_level, bmi, smoking_status, Residence_type): gender_mapping = {'Male': 1, 'Female': 0} hypertension_mapping = {'Yes': 1, 'No': 0} ever_married_mapping = {'Yes': 1, 'No': 0} work_type_mapping = {'Private': 2, 'Self-employed': 4, 'Govt_job': 3, 'children': 1, 'Never_worked': 0} heart_disease_mapping = {'Yes': 1, 'No': 0} smoking_status_mapping = {'formerly smoked': 3, 'smokes': 1, 'never smoked': 2, 'Unknown': 0} Residence_type_mapping = {'Urban': 1, 'Rural': 0} # Map categorical variables to their corresponding numerical values gender = gender_mapping[gender] hypertension = hypertension_mapping[hypertension] ever_married = ever_married_mapping[ever_married] work_type = work_type_mapping[work_type] heart_disease = heart_disease_mapping[heart_disease] smoking_status = smoking_status_mapping[smoking_status] Residence_type = Residence_type_mapping[Residence_type] inputs = [gender, age, hypertension, ever_married, work_type, heart_disease, avg_glucose_level, bmi, smoking_status, Residence_type] input_labels = ['gender', 'age', 'hypertension', 'ever_married', 'work_type', 'heart_disease', 'avg_glucose_level', 'bmi', 'smoking_status', 'Residence_type'] input_df = pd.DataFrame([inputs], columns=input_labels) prediction = model.predict_proba(input_df)[0][1] result = "The probability of stroke is {:.2f}%".format(prediction * 100) # to give a percentage return result input_labels = [ 'gender', 'age', 'hypertension', 'ever_married', 'work_type', 'heart_disease', 'avg_glucose_level', 'bmi', 'smoking_status', 'Residence_type' ] iface = gr.Interface( fn=predict, inputs=[ gr.components.Radio(choices=['Female', 'Male'], label="Gender"), gr.components.Slider(label="Age"), gr.components.Radio(choices=['Yes', 'No'], label="Hypertension"), gr.components.Radio(choices=['Yes', 'No'], label="Ever Married"), gr.components.Radio(choices=['Private', 'Self-employed', 'Govt_job', 'children', 'Never_worked'], label="Work Type"), gr.components.Radio(choices=['Yes', 'No'], label="Heart Disease"), gr.components.Number(label="Average Glucose Level"), gr.components.Slider(label="BMI"), gr.components.Radio(choices=['formerly smoked', 'never smoked', 'smokes', 'Unknown'], label="Smoking Status"), gr.components.Radio(choices=['Urban', 'Rural'], label="Residence Type") ], outputs='text', title='Stroke Probability Predictor', description='Predicts the probability of having a stroke based on input features.' ) iface.launch()