import openai import gradio as gr import PyPDF2 import os import docx class QuestionsGenarator: def __init__(self): openai.api_key = os.getenv("OPENAI_API_KEY") def extract_text_from_file(self,file_path): # Get the file extension file_extension = os.path.splitext(file_path)[1] if file_extension == '.pdf': with open(file_path, 'rb') as file: # Create a PDF file reader object reader = PyPDF2.PdfFileReader(file) # Create an empty string to hold the extracted text extracted_text = "" # Loop through each page in the PDF and extract the text for page_number in range(reader.getNumPages()): page = reader.getPage(page_number) extracted_text += page.extractText() return extracted_text elif file_extension == '.txt': with open(file_path, 'r') as file: # Just read the entire contents of the text file return file.read() elif file_extension == '.docx': doc = docx.Document(file_path) text = [] for paragraph in doc.paragraphs: text.append(paragraph.text) return '\n'.join(text) else: return "Unsupported file type" def response(self,job_description_path): job_description_path = job_description_path.name resume = self.extract_text_from_file(job_description_path) # Define the prompt or input for the model prompt = f"""Find Education Gaps in given resume. Find Skills in resume. ```{resume}``` """ # Generate a response from the GPT-3 model response = openai.Completion.create( engine='text-davinci-003', # Choose the GPT-3 engine you want to use prompt=prompt, max_tokens=100, # Set the maximum number of tokens in the generated response temperature=0, # Controls the randomness of the output. Higher values = more random, lower values = more focused n=1, # Generate a single response stop=None, # Specify an optional stop sequence to limit the length of the response ) # Extract the generated text from the API response generated_text = response.choices[0].text.strip() return generated_text def gradio_interface(self): with gr.Blocks(css="style.css",theme='karthikeyan-adople/hudsonhayes-gray') as app: gr.HTML("""