from langchain import HuggingFacePipeline from langchain.chains import RetrievalQA from langchain.document_loaders import BSHTMLLoader, DirectoryLoader from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from transformers import AutoTokenizer import gradio as gr bshtml_dir_loader = DirectoryLoader('./data/', loader_cls=BSHTMLLoader) data = bshtml_dir_loader.load() bloomz_tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-1b7") text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(bloomz_tokenizer, chunk_size=100, chunk_overlap=0, separator="\n") documents = text_splitter.split_documents(data) embeddings = HuggingFaceEmbeddings() llm = HuggingFacePipeline.from_model_id( model_id="bigscience/bloomz-1b7", task="text-generation", model_kwargs={"temperature" : 0, "max_length" : 500}) vectordb = Chroma.from_documents(documents=documents, embedding=embeddings) doc_retriever = vectordb.as_retriever() shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever) def query(query): shakespeare_qa.run(query) iface = gr.Interface(fn=query, inputs="text", outputs="text") iface.launch()