import gradio as gr from utils.model import load_model from utils.transformations import transform_image from utils.prediction import predict_class # Load the model only once when the application starts net = load_model() def classify_image(image_path): """ Main function for the Gradio interface. """ image_tensor = transform_image(image_path) predicted_class, confidence = predict_class(image_tensor, net) return f"Predicted Class: {predicted_class}, Confidence: {confidence:.2f}" iface = gr.Interface( fn=classify_image, inputs=gr.Image(type="filepath"), outputs="text", title="Galaxy Classification", description="Upload an image of a galaxy to classify it." ) iface.launch()