import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Model and tokenizer paths model_path = "rajj0/autotrain-phi3-midium-4k-godsent-orpo-6" # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Function to generate a response from the model def generate_response(user_input): messages = [{"role": "user", "content": user_input}] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) return response # Create the Gradio interface iface = gr.Interface( fn=generate_response, inputs="text", outputs="text", title="PHI Model Chatbot", description="A chatbot powered by the PHI model." ) # Launch the Gradio interface if __name__ == "__main__": iface.launch()