import pandas as pd import time from model.river_models import RideModel # Load dataset df = pd.read_csv("data/rides.csv") # Drop ID/timestamp for modeling feature_cols = ['pickup_lat', 'pickup_lon', 'dropoff_lat', 'dropoff_lon', 'distance_km', 'traffic_level'] target_cols = ['fare_amount', 'duration_min'] model = RideModel() for i, row in df.iterrows(): x = row[feature_cols].to_dict() y = row[target_cols].to_dict() preds = model.predict(x) model.update(x, y) # Print progress print(f"Ride {row['ride_id']}:") print(f" 📍 Fare: actual ₹{y['fare_amount']} | pred ₹{round(preds['fare_pred'],2)} | MAE: {round(model.fare_mae.get(),2)}") print(f" 🚗 ETA: actual {y['duration_min']} min | pred {round(preds['eta_pred'],2)} min | MAE: {round(model.eta_mae.get(),2)}") print("—" * 60) # Simulate streaming delay time.sleep(0.1)