---
title: Pinecone
---
## Overview
Install pinecone related dependencies using the following command:
```bash
pip install --upgrade 'pinecone-client pinecone-text'
```
In order to use Pinecone as vector database, set the environment variable `PINECONE_API_KEY` which you can find on [Pinecone dashboard](https://app.pinecone.io/).
```python main.py
from embedchain import App
# Load pinecone configuration from yaml file
app = App.from_config(config_path="pod_config.yaml")
# Or
app = App.from_config(config_path="serverless_config.yaml")
```
```yaml pod_config.yaml
vectordb:
provider: pinecone
config:
metric: cosine
vector_dimension: 1536
index_name: my-pinecone-index
pod_config:
environment: gcp-starter
metadata_config:
indexed:
- "url"
- "hash"
```
```yaml serverless_config.yaml
vectordb:
provider: pinecone
config:
metric: cosine
vector_dimension: 1536
index_name: my-pinecone-index
serverless_config:
cloud: aws
region: us-west-2
```
You can find more information about Pinecone configuration [here](https://docs.pinecone.io/docs/manage-indexes#create-a-pod-based-index).
You can also optionally provide `index_name` as a config param in yaml file to specify the index name. If not provided, the index name will be `{collection_name}-{vector_dimension}`.
## Usage
### Hybrid search
Here is an example of how you can do hybrid search using Pinecone as a vector database through Embedchain.
```python
import os
from embedchain import App
config = {
'app': {
"config": {
"id": "ec-docs-hybrid-search"
}
},
'vectordb': {
'provider': 'pinecone',
'config': {
'metric': 'dotproduct',
'vector_dimension': 1536,
'index_name': 'my-index',
'serverless_config': {
'cloud': 'aws',
'region': 'us-west-2'
},
'hybrid_search': True, # Remember to set this for hybrid search
}
}
}
# Initialize app
app = App.from_config(config=config)
# Add documents
app.add("/path/to/file.pdf", data_type="pdf_file", namespace="my-namespace")
# Query
app.query("", namespace="my-namespace")
```
Under the hood, Embedchain fetches the relevant chunks from the documents you added by doing hybrid search on the pinecone index.
If you have questions on how pinecone hybrid search works, please refer to their [offical documentation here](https://docs.pinecone.io/docs/hybrid-search).