import numpy as np import random import json import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from nltk_utils import bag_of_words, tokenize, stem from model import NeuralNet with open('intents.json', 'r') as f: intents = json.load(f) all_words = [] tags = [] xy = [] # loop through each sentence in our intents patterns for intent in intents['intents']: tag = intent['tag'] # add to tag list tags.append(tag) for pattern in intent['patterns']: # tokenize each word in the sentence w = tokenize(pattern) # add to our words list all_words.extend(w) # add to xy pair xy.append((w, tag)) # stem and lower each word ignore_words = ['?', '.', '!'] all_words = [stem(w) for w in all_words if w not in ignore_words] # remove duplicates and sort all_words = sorted(set(all_words)) tags = sorted(set(tags)) print(len(xy), "patterns") print(len(tags), "tags:", tags) print(len(all_words), "unique stemmed words:", all_words) # create training data X_train = [] y_train = [] for (pattern_sentence, tag) in xy: # X: bag of words for each pattern_sentence bag = bag_of_words(pattern_sentence, all_words) X_train.append(bag) # y: PyTorch CrossEntropyLoss needs only class labels, not one-hot label = tags.index(tag) y_train.append(label) X_train = np.array(X_train) y_train = np.array(y_train) # Hyper-parameters num_epochs = 1000 batch_size = 8 learning_rate = 0.001 input_size = len(X_train[0]) hidden_size = 8 output_size = len(tags) print(input_size, output_size) class ChatDataset(Dataset): def __init__(self): self.n_samples = len(X_train) self.x_data = X_train self.y_data = y_train # support indexing such that dataset[i] can be used to get i-th sample def __getitem__(self, index): return self.x_data[index], self.y_data[index] # we can call len(dataset) to return the size def __len__(self): return self.n_samples dataset = ChatDataset() train_loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=0) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = NeuralNet(input_size, hidden_size, output_size).to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Train the model for epoch in range(num_epochs): for (words, labels) in train_loader: words = words.to(device) labels = labels.to(dtype=torch.long).to(device) # Forward pass outputs = model(words) # if y would be one-hot, we must apply # labels = torch.max(labels, 1)[1] loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if (epoch+1) % 100 == 0: print (f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}') print(f'final loss: {loss.item():.4f}') data = { "model_state": model.state_dict(), "input_size": input_size, "hidden_size": hidden_size, "output_size": output_size, "all_words": all_words, "tags": tags } FILE = "data.pth" torch.save(data, FILE) print(f'training complete. file saved to {FILE}')