from gradio import Interface, components from transformers import AutoTokenizer, AutoModelForCausalLM # 加载模型和tokenizer tokenizer = AutoTokenizer.from_pretrained("raincandy-u/TinyStories-656K") model = AutoModelForCausalLM.from_pretrained("raincandy-u/TinyStories-656K") # 定义你的应用程序 def generate_story(input_text): input_text = f"<|start_story|>{input_text}" encoded_input = tokenizer(input_text, return_tensors="pt") output_sequences = model.generate( **encoded_input, pad_token_id=tokenizer.eos_token_id, max_new_tokens=512, do_sample=True, top_k=40, top_p=0.9, temperature=0.6 ) return tokenizer.decode(output_sequences[0], skip_special_tokens=True) # 定义组件 input_component = components.Textbox(lines=10) label = components.Label("Try it!\nNote: Most of the time the default beginning works well.") # 定义Interface interface = Interface( fn=generate_story, inputs=input_component, outputs="textbox", title="TinyStories-656K", description="This is a text generation model trained on a dataset of short stories. It can generate short stories based on your input.", examples=[['Once upon a time, there was a girl '], ['Long time ago, ']], theme="gradio/light" ) interface.launch()