from datasets import load_dataset from transformers import (AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer) # Reload dataset and tokenizer dataset = load_dataset("liar") dataset = dataset["train"].train_test_split(test_size=0.2, seed=42) def simplify_label(example): name = dataset["train"].features["label"].names[ example["label"] ] example["label"] = int(name in ["pants‑fire","false","barely‑true"]) return example dataset = dataset.map(simplify_label) tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Tokenize the text field (can try combining title + text later for improved performance): def tokenize(example): return tokenizer(example["statement"], truncation=True, padding="max_length", max_length=128) # Tokenize the dataset tokenized_dataset = dataset.map(tokenize, batched=True) tokenized_dataset.set_format("torch", columns=["input_ids", "attention_mask", "label"]) # Load model model = AutoModelForSequenceClassification.from_pretrained("models/bert-liar-fake-news") # Set up Trainer for evaluation training_args = TrainingArguments(output_dir="./results", per_device_eval_batch_size=8) trainer = Trainer(model=model, args=training_args) # Evaluate metrics = trainer.evaluate(eval_dataset=tokenized_dataset["test"]) print(metrics)