from umap_reducer import UMAPReducer from flask import Flask, request, render_template, jsonify, make_response from flask_cors import CORS import os from dotenv import load_dotenv from transformers import pipeline import feedparser import json from dateutil import parser import re import numpy as np import gzip load_dotenv() # Load Setiment Classifier # sentiment_analysis = pipeline( # "sentiment-analysis", model="siebert/sentiment-roberta-large-english") app = Flask(__name__, static_url_path='/static') reducer = UMAPReducer() CORS(app) @app.route('/') def index(): return render_template('index.html') @app.route('/run-umap') # //methods=['POST']) def run_umap(): data = np.random.rand(512, 4) # UMAP embeddings embeddings = reducer.embed(data) content = gzip.compress(json.dumps(embeddings.tolist()).encode('utf8'), 5) response = make_response(content) response.headers['Content-length'] = len(content) response.headers['Content-Encoding'] = 'gzip' return response # @app.route('/news') # def get_news(): # feed_url = request.args.get('feed_url') # # check if string is a valid # # file name for cache # file_name = "".join(re.split(r"https://|\.|/", feed_url)) # feed_entries = get_feed(feed_url) # # filter only titles for sentiment analysis # try: # with open(f'{file_name}_cache.json') as file: # cache = json.load(file) # except: # cache = {} # # if new homepage is newer than cache, update cache and return # print("new date", feed_entries['last_update']) # print("old date", cache['last_update'] # if 'last_update' in cache else "None") # if not cache or parser.parse(feed_entries['last_update']) > parser.parse(cache['last_update']): # print("Updating cache with new preditions") # titles = [entry['title'] for entry in feed_entries['entries']] # # run sentiment analysis on titles # predictions = [sentiment_analysis(sentence) for sentence in titles] # # parse Negative and Positive, normalize to -1 to 1 # predictions = [-prediction[0]['score'] if prediction[0]['label'] == # 'NEGATIVE' else prediction[0]['score'] for prediction in predictions] # # merge rss data with predictions # entries_predicitons = [{**entry, 'sentiment': prediction} # for entry, prediction in zip(feed_entries['entries'], predictions)] # output = {'entries': entries_predicitons, # 'last_update': feed_entries['last_update']} # # update last precitions cache # with open(f'{file_name}_cache.json', 'w') as file: # json.dump(output, file) # # send back json # return jsonify(output) # else: # print("Returning cached predictions") # return jsonify(cache) # @ app.route('/predict', methods=['POST']) # def predict(): # # get data from POST # if request.method == 'POST': # # get current news # # get post body data # data = request.get_json() # if data.get('sentences') is None: # return jsonify({'error': 'No text provided'}) # # get post expeceted to be under {'sentences': ['text': '...']} # sentences = data.get('sentences') # # prencit sentiments # predictions = [sentiment_analysis(sentence) for sentence in sentences] # # parse Negative and Positive, normalize to -1 to 1 # predictions = [-prediction[0]['score'] if prediction[0]['label'] == # 'NEGATIVE' else prediction[0]['score'] for prediction in predictions] # output = [dict(sentence=sentence, sentiment=prediction) # for sentence, prediction in zip(sentences, predictions)] # # send back json # return jsonify(output) # def get_feed(feed_url): # feed = feedparser.parse(feed_url) # return {'entries': feed['entries'], 'last_update': feed["feed"]['updated']} if __name__ == '__main__': app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))