from diffusers import ( StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, LCMScheduler, AutoencoderTiny, ) from compel import Compel import torch try: import intel_extension_for_pytorch as ipex # type: ignore except: pass import psutil from config import Args from pydantic import BaseModel, Field from PIL import Image import math taesd_model = "madebyollin/taesd" controlnet_model = "monster-labs/control_v1p_sd15_qrcode_monster" base_model = "nitrosocke/mo-di-diffusion" lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5" default_prompt = "abstract art of a men with curly hair by Pablo Picasso" page_content = """
This demo showcases LCM LoRA + ControlNet + Image to Imasge pipeline using Diffusers with a MJPEG stream server.
Change the prompt to generate different images, accepts Compel syntax.
""" class Pipeline: class Info(BaseModel): name: str = "controlnet+loras+sd15" title: str = "LCM + LoRA + Controlnet" description: str = "Generates an image from a text prompt" input_mode: str = "image" page_content: str = page_content class InputParams(BaseModel): prompt: str = Field( default_prompt, title="Prompt", field="textarea", id="prompt", ) seed: int = Field( 2159232, min=0, title="Seed", field="seed", hide=True, id="seed" ) steps: int = Field( 5, min=1, max=15, title="Steps", field="range", hide=True, id="steps" ) width: int = Field( 512, min=2, max=15, title="Width", disabled=True, hide=True, id="width" ) height: int = Field( 512, min=2, max=15, title="Height", disabled=True, hide=True, id="height" ) guidance_scale: float = Field( 1.0, min=0, max=2, step=0.001, title="Guidance Scale", field="range", hide=True, id="guidance_scale", ) strength: float = Field( 0.6, min=0.25, max=1.0, step=0.001, title="Strength", field="range", hide=True, id="strength", ) controlnet_scale: float = Field( 1.0, min=0, max=1.0, step=0.001, title="Controlnet Scale", field="range", hide=True, id="controlnet_scale", ) controlnet_start: float = Field( 0.0, min=0, max=1.0, step=0.001, title="Controlnet Start", field="range", hide=True, id="controlnet_start", ) controlnet_end: float = Field( 1.0, min=0, max=1.0, step=0.001, title="Controlnet End", field="range", hide=True, id="controlnet_end", ) blend: float = Field( 0.1, min=0.0, max=1.0, step=0.001, title="Blend", field="range", hide=True, id="blend", ) def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): controlnet_qrcode = ControlNetModel.from_pretrained( controlnet_model, torch_dtype=torch_dtype, subfolder="v2" ).to(device) if args.safety_checker: self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( base_model, controlnet=controlnet_qrcode, ) else: self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( base_model, safety_checker=None, controlnet=controlnet_qrcode, ) self.control_image = Image.open( "qr-code.png").convert("RGB").resize((512, 512)) self.pipe.scheduler = LCMScheduler.from_config( self.pipe.scheduler.config) self.pipe.set_progress_bar_config(disable=True) if device.type != "mps": self.pipe.unet.to(memory_format=torch.channels_last) if args.taesd: self.pipe.vae = AutoencoderTiny.from_pretrained( taesd_model, torch_dtype=torch_dtype, use_safetensors=True ).to(device) # Load LCM LoRA self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm") self.pipe.to(device=device, dtype=torch_dtype).to(device) if args.compel: self.compel_proc = Compel( tokenizer=self.pipe.tokenizer, text_encoder=self.pipe.text_encoder, truncate_long_prompts=False, ) if args.torch_compile: self.pipe.unet = torch.compile( self.pipe.unet, mode="reduce-overhead", fullgraph=True ) self.pipe.vae = torch.compile( self.pipe.vae, mode="reduce-overhead", fullgraph=True ) self.pipe( prompt="warmup", image=[Image.new("RGB", (512, 512))], control_image=[Image.new("RGB", (512, 512))], ) def predict(self, params: "Pipeline.InputParams") -> Image.Image: generator = torch.manual_seed(params.seed) prompt = f"modern disney style {params.prompt}" prompt_embeds = None prompt = params.prompt if hasattr(self, "compel_proc"): prompt_embeds = self.compel_proc(prompt) prompt = None steps = params.steps strength = params.strength if int(steps * strength) < 1: steps = math.ceil(1 / max(0.10, strength)) blend_qr_image = Image.blend( params.image, self.control_image, alpha=params.blend ) results = self.pipe( image=blend_qr_image, control_image=self.control_image, prompt=prompt, prompt_embeds=prompt_embeds, generator=generator, strength=strength, num_inference_steps=steps, guidance_scale=params.guidance_scale, width=params.width, height=params.height, output_type="pil", controlnet_conditioning_scale=params.controlnet_scale, control_guidance_start=params.controlnet_start, control_guidance_end=params.controlnet_end, ) nsfw_content_detected = ( results.nsfw_content_detected[0] if "nsfw_content_detected" in results else False ) if nsfw_content_detected: return None result_image = results.images[0] return result_image