from diffusers import ( StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, LCMScheduler, AutoencoderTiny, ) from compel import Compel import torch from pipelines.utils.canny_gpu import SobelOperator try: import intel_extension_for_pytorch as ipex # type: ignore except: pass import psutil from config import Args from pydantic import BaseModel, Field from PIL import Image import math taesd_model = "madebyollin/taesd" controlnet_model = "lllyasviel/control_v11p_sd15_canny" # base model with activation token, it will prepend the prompt with the activation token base_models = { "plasmo/woolitize": "woolitize", "nitrosocke/Ghibli-Diffusion": "ghibli style", "nitrosocke/mo-di-diffusion": "modern disney style", } lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5" default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece" page_content = """
This demo showcases LCM LoRA + ControlNet + Image to Imasge pipeline using Diffusers with a MJPEG stream server.
Change the prompt to generate different images, accepts Compel syntax.
""" class Pipeline: class Info(BaseModel): name: str = "controlnet+loras+sd15" title: str = "LCM + LoRA + Controlnet" description: str = "Generates an image from a text prompt" input_mode: str = "image" page_content: str = page_content class InputParams(BaseModel): prompt: str = Field( default_prompt, title="Prompt", field="textarea", id="prompt", ) base_model_id: str = Field( "plasmo/woolitize", title="Base Model", values=list(base_models.keys()), field="select", id="base_model_id", ) seed: int = Field( 2159232, min=0, title="Seed", field="seed", hide=True, id="seed" ) steps: int = Field( 4, min=1, max=15, title="Steps", field="range", hide=True, id="steps" ) width: int = Field( 768, min=2, max=15, title="Width", disabled=True, hide=True, id="width" ) height: int = Field( 768, min=2, max=15, title="Height", disabled=True, hide=True, id="height" ) guidance_scale: float = Field( 0.2, min=0, max=2, step=0.001, title="Guidance Scale", field="range", hide=True, id="guidance_scale", ) strength: float = Field( 0.5, min=0.25, max=1.0, step=0.001, title="Strength", field="range", hide=True, id="strength", ) controlnet_scale: float = Field( 0.8, min=0, max=1.0, step=0.001, title="Controlnet Scale", field="range", hide=True, id="controlnet_scale", ) controlnet_start: float = Field( 0.0, min=0, max=1.0, step=0.001, title="Controlnet Start", field="range", hide=True, id="controlnet_start", ) controlnet_end: float = Field( 1.0, min=0, max=1.0, step=0.001, title="Controlnet End", field="range", hide=True, id="controlnet_end", ) canny_low_threshold: float = Field( 0.31, min=0, max=1.0, step=0.001, title="Canny Low Threshold", field="range", hide=True, id="canny_low_threshold", ) canny_high_threshold: float = Field( 0.125, min=0, max=1.0, step=0.001, title="Canny High Threshold", field="range", hide=True, id="canny_high_threshold", ) debug_canny: bool = Field( False, title="Debug Canny", field="checkbox", hide=True, id="debug_canny", ) def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): controlnet_canny = ControlNetModel.from_pretrained( controlnet_model, torch_dtype=torch_dtype ).to(device) self.pipes = {} if args.safety_checker: for base_model_id in base_models.keys(): pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( base_model_id, controlnet=controlnet_canny, ) self.pipes[base_model_id] = pipe else: for base_model_id in base_models.keys(): pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( base_model_id, safety_checker=None, controlnet=controlnet_canny, ) self.pipes[base_model_id] = pipe self.canny_torch = SobelOperator(device=device) for pipe in self.pipes.values(): pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=True) pipe.to(device=device, dtype=torch_dtype).to(device) if device.type != "mps": pipe.unet.to(memory_format=torch.channels_last) if psutil.virtual_memory().total < 64 * 1024**3: pipe.enable_attention_slicing() if args.use_taesd: pipe.vae = AutoencoderTiny.from_pretrained( taesd_model, torch_dtype=torch_dtype, use_safetensors=True ).to(device) # Load LCM LoRA pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm") pipe.compel_proc = Compel( tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder, truncate_long_prompts=False, ) if args.torch_compile: pipe.unet = torch.compile( pipe.unet, mode="reduce-overhead", fullgraph=True ) pipe.vae = torch.compile( pipe.vae, mode="reduce-overhead", fullgraph=True ) pipe( prompt="warmup", image=[Image.new("RGB", (768, 768))], control_image=[Image.new("RGB", (768, 768))], ) def predict(self, params: "Pipeline.InputParams") -> Image.Image: generator = torch.manual_seed(params.seed) pipe = self.pipes[params.base_model_id] activation_token = base_models[params.base_model_id] prompt = f"{activation_token} {params.prompt}" prompt_embeds = pipe.compel_proc(prompt) control_image = self.canny_torch( params.image, params.canny_low_threshold, params.canny_high_threshold ) steps = params.steps strength = params.strength if int(steps * strength) < 1: steps = math.ceil(1 / max(0.10, strength)) results = pipe( image=params.image, control_image=control_image, prompt_embeds=prompt_embeds, generator=generator, strength=strength, num_inference_steps=steps, guidance_scale=params.guidance_scale, width=params.width, height=params.height, output_type="pil", controlnet_conditioning_scale=params.controlnet_scale, control_guidance_start=params.controlnet_start, control_guidance_end=params.controlnet_end, ) nsfw_content_detected = ( results.nsfw_content_detected[0] if "nsfw_content_detected" in results else False ) if nsfw_content_detected: return None result_image = results.images[0] if params.debug_canny: # paste control_image on top of result_image w0, h0 = (200, 200) control_image = control_image.resize((w0, h0)) w1, h1 = result_image.size result_image.paste(control_image, (w1 - w0, h1 - h0)) return result_image