import numpy as np import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange # classes class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.attend = nn.Softmax(dim = -1) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class CrossAttention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.to_k = nn.Linear(dim, inner_dim , bias=False) self.to_v = nn.Linear(dim, inner_dim , bias = False) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x_qkv, query_length=1): h = self.heads k = self.to_k(x_qkv)[:, query_length:] k = rearrange(k, 'b n (h d) -> b h n d', h = h) v = self.to_v(x_qkv)[:, query_length:] v = rearrange(v, 'b n (h d) -> b h n d', h = h) q = self.to_q(x_qkv)[:, :query_length] q = rearrange(q, 'b n (h d) -> b h n d', h = h) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale attn = dots.softmax(dim=-1) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return out class TransformerEncoder(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class TransformerDecoder(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.pos_embedding = nn.Parameter(torch.randn(1, 6, dim)) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), PreNorm(dim, CrossAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) ])) def forward(self, x, y): x = x + self.pos_embedding[:, :x.shape[1]] for sattn, cattn, ff in self.layers: x = sattn(x) + x xy = torch.cat((x,y), dim=1) x = cattn(xy, query_length=x.shape[1]) + x x = ff(x) + x return x class Network(nn.Module): def __init__(self, opts): super(Network, self).__init__() self.transformer_encoder = TransformerEncoder(dim=512, depth=6, heads=8, dim_head=64, mlp_dim=512, dropout=0) self.transformer_decoder = TransformerDecoder(dim=512, depth=6, heads=8, dim_head=64, mlp_dim=512, dropout=0) self.layer1 = nn.Linear(3, 256) self.layer2 = nn.Linear(512, 256) self.layer3 = nn.Linear(512, 512) self.layer4 = nn.Linear(512, 512) self.mlp_head = nn.Sequential( nn.Linear(512, 512) ) def forward(self, w, x, y, alpha=1.): #w: latent vectors #x: flow vectors #y: StyleGAN features xh = F.relu(self.layer1(x)) yh = F.relu(self.layer2(y)) xyh = torch.cat([xh,yh], dim=2) xyh = F.relu(self.layer3(xyh)) xyh = self.transformer_encoder(xyh) wh = F.relu(self.layer4(w)) h = self.transformer_decoder(wh, xyh) h = self.mlp_head(h) w_hat = w+alpha*h return w_hat