from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler import torch import os from huggingface_hub import hf_hub_download try: import intel_extension_for_pytorch as ipex except: pass from PIL import Image import gradio as gr import time from safetensors.torch import load_file # Constants BASE = "stabilityai/stable-diffusion-xl-base-1.0" REPO = "ByteDance/SDXL-Lightning" # 1-step CHECKPOINT = "sdxl_lightning_1step_unet_x0.safetensors" # { # "1-Step": ["sdxl_lightning_1step_unet_x0.safetensors", 1], # "2-Step": ["sdxl_lightning_2step_unet.safetensors", 2], # "4-Step": ["sdxl_lightning_4step_unet.safetensors", 4], # "8-Step": ["sdxl_lightning_8step_unet.safetensors", 8], # } TORCH_COMPILE = os.environ.get("TORCH_COMPILE", "0") == "1" # check if MPS is available OSX only M1/M2/M3 chips mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() device = torch.device( "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" ) torch_device = device torch_dtype = torch.float16 print(f"TORCH_COMPILE: {TORCH_COMPILE}") print(f"device: {device}") if mps_available: device = torch.device("mps") torch_device = "cpu" torch_dtype = torch.float32 pipe = StableDiffusionXLPipeline.from_pretrained( BASE, torch_dtype=torch.float16, variant="fp16" ) pipe.scheduler = EulerDiscreteScheduler.from_config( pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" ) pipe.unet.load_state_dict( torch.load(load_file(hf_hub_download(REPO, CHECKPOINT)), map_location="cuda") ) pipe.to(device=torch_device, dtype=torch_dtype).to(device) pipe.set_progress_bar_config(disable=True) def predict(prompt, seed=1231231): generator = torch.manual_seed(seed) last_time = time.time() results = pipe( prompt=prompt, generator=generator, num_inference_steps=1, guidance_scale=0.0, width=512, height=512, # original_inference_steps=params.lcm_steps, output_type="pil", ) print(f"Pipe took {time.time() - last_time} seconds") nsfw_content_detected = ( results.nsfw_content_detected[0] if "nsfw_content_detected" in results else False ) if nsfw_content_detected: gr.Warning("NSFW content detected.") return Image.new("RGB", (512, 512)) return results.images[0] css = """ #container{ margin: 0 auto; max-width: 40rem; } #intro{ max-width: 100%; text-align: center; margin: 0 auto; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="container"): gr.Markdown( """# SDXL Turbo - Text To Image ## Unofficial Demo SDXL Turbo model can generate high quality images in a single pass read more on [stability.ai post](https://stability.ai/news/stability-ai-sdxl-turbo). **Model**: https://huggingface.co/stabilityai/sdxl-turbo """, elem_id="intro", ) with gr.Row(): with gr.Row(): prompt = gr.Textbox( placeholder="Insert your prompt here:", scale=5, container=False ) generate_bt = gr.Button("Generate", scale=1) image = gr.Image(type="filepath") with gr.Accordion("Advanced options", open=False): seed = gr.Slider( randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1 ) with gr.Accordion("Run with diffusers"): gr.Markdown( """## Running SDXL Turbo with `diffusers` ```py import torch from diffusers import ( StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, ) from huggingface_hub import hf_hub_download from safetensors.torch import load_file base = "stabilityai/stable-diffusion-xl-base-1.0" repo = "ByteDance/SDXL-Lightning" ckpt = "sdxl_lightning_1step_unet_x0.safetensors" # Use the correct ckpt for your step setting! # Load model. unet = UNet2DConditionModel.from_config(base, subfolder="unet").to( "cuda", torch.float16 ) unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda")) pipe = StableDiffusionXLPipeline.from_pretrained( base, unet=unet, torch_dtype=torch.float16, variant="fp16" ).to("cuda") # Ensure sampler uses "trailing" timesteps and "sample" prediction type. pipe.scheduler = EulerDiscreteScheduler.from_config( pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" ) # Ensure using the same inference steps as the loaded model and CFG set to 0. pipe("A girl smiling", num_inference_steps=1, guidance_scale=0).images[0].save( "output.png" ) ``` """ ) inputs = [prompt, seed] generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False) seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) demo.queue() demo.launch()