import torch import torch.nn as nn import torch.nn.functional as F from ..geometry import index, orthogonal, perspective class BasePIFuNet(nn.Module): def __init__(self, projection_mode='orthogonal', error_term=nn.MSELoss(), ): """ :param projection_mode: Either orthogonal or perspective. It will call the corresponding function for projection. :param error_term: nn Loss between the predicted [B, Res, N] and the label [B, Res, N] """ super(BasePIFuNet, self).__init__() self.name = 'base' self.error_term = error_term self.index = index self.projection = orthogonal if projection_mode == 'orthogonal' else perspective self.preds = None self.labels = None def forward(self, points, images, calibs, transforms=None): ''' :param points: [B, 3, N] world space coordinates of points :param images: [B, C, H, W] input images :param calibs: [B, 3, 4] calibration matrices for each image :param transforms: Optional [B, 2, 3] image space coordinate transforms :return: [B, Res, N] predictions for each point ''' self.filter(images) self.query(points, calibs, transforms) return self.get_preds() def filter(self, images): ''' Filter the input images store all intermediate features. :param images: [B, C, H, W] input images ''' None def query(self, points, calibs, transforms=None, labels=None): ''' Given 3D points, query the network predictions for each point. Image features should be pre-computed before this call. store all intermediate features. query() function may behave differently during training/testing. :param points: [B, 3, N] world space coordinates of points :param calibs: [B, 3, 4] calibration matrices for each image :param transforms: Optional [B, 2, 3] image space coordinate transforms :param labels: Optional [B, Res, N] gt labeling :return: [B, Res, N] predictions for each point ''' None def get_preds(self): ''' Get the predictions from the last query :return: [B, Res, N] network prediction for the last query ''' return self.preds def get_error(self): ''' Get the network loss from the last query :return: loss term ''' return self.error_term(self.preds, self.labels)