from flask import Flask, request, jsonify from flask_cors import CORS import os from dotenv import load_dotenv from transformers import pipeline import feedparser import json from dateutil import parser import re load_dotenv() # Load Setiment Classifier sentiment_analysis = pipeline( "sentiment-analysis", model="siebert/sentiment-roberta-large-english") app = Flask(__name__, static_url_path='/static') CORS(app) @app.route('/') def index(): return app.send_static_file('index.html') @app.route('/news') def get_news(): feed_url = request.args.get('feed_url') # check if string is a valid # file name for cache file_name = "".join(re.split(r"https://|\.|/", feed_url)) feed_entries = get_feed(feed_url) # filter only titles for sentiment analysis try: with open(f'{file_name}_cache.json') as file: cache = json.load(file) except: cache = {} # if new homepage is newer than cache, update cache and return print("new date", feed_entries['last_update']) print("old date", cache['last_update'] if 'last_update' in cache else "None") if not cache or parser.parse(feed_entries['last_update']) > parser.parse(cache['last_update']): print("Updating cache with new preditions") titles = [entry['title'] for entry in feed_entries['entries']] # run sentiment analysis on titles predictions = [sentiment_analysis(sentence) for sentence in titles] # parse Negative and Positive, normalize to -1 to 1 predictions = [-prediction[0]['score'] if prediction[0]['label'] == 'NEGATIVE' else prediction[0]['score'] for prediction in predictions] # merge rss data with predictions entries_predicitons = [{**entry, 'sentiment': prediction} for entry, prediction in zip(feed_entries['entries'], predictions)] output = {'entries': entries_predicitons, 'last_update': feed_entries['last_update']} # update last precitions cache with open(f'{file_name}_cache.json', 'w') as file: json.dump(output, file) # send back json return jsonify(output) else: print("Returning cached predictions") return jsonify(cache) @ app.route('/predict', methods=['POST']) def predict(): # get data from POST if request.method == 'POST': # get current news # get post body data data = request.get_json() if data.get('sentences') is None: return jsonify({'error': 'No text provided'}) # get post expeceted to be under {'sentences': ['text': '...']} sentences = data.get('sentences') # prencit sentiments predictions = [sentiment_analysis(sentence) for sentence in sentences] # parse Negative and Positive, normalize to -1 to 1 predictions = [-prediction[0]['score'] if prediction[0]['label'] == 'NEGATIVE' else prediction[0]['score'] for prediction in predictions] output = [dict(sentence=sentence, sentiment=prediction) for sentence, prediction in zip(sentences, predictions)] # send back json return jsonify(output) def get_feed(feed_url): feed = feedparser.parse(feed_url) return {'entries': feed['entries'], 'last_update': feed["feed"]['updated']} if __name__ == '__main__': app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))