import os import numpy as np import torch import torch.nn.functional as F from torchvision.transforms.functional import normalize from PIL import Image, ImageOps, ImageSequence from typing import List from pathlib import Path from huggingface_hub import snapshot_download, hf_hub_download def tensor_to_pil(images: torch.Tensor | List[torch.Tensor]) -> List[Image.Image]: if not isinstance(images, list): images = [images] imgs = [] for image in images: i = 255.0 * image.cpu().numpy() img = Image.fromarray(np.clip(np.squeeze(i), 0, 255).astype(np.uint8)) imgs.append(img) return imgs def pad_image(input_image, background_color=(0, 0, 0)): w, h = input_image.size pad_w = (64 - w % 64) % 64 pad_h = (64 - h % 64) % 64 new_size = (w + pad_w, h + pad_h) im_padded = Image.new(input_image.mode, new_size, background_color) im_padded.paste(input_image, (pad_w // 2, pad_h // 2)) if im_padded.size[0] == im_padded.size[1]: return im_padded elif im_padded.size[0] > im_padded.size[1]: new_size = (im_padded.size[0], im_padded.size[0]) new_image = Image.new(im_padded.mode, new_size, background_color) new_image.paste(im_padded, (0, (new_size[1] - im_padded.size[1]) // 2)) return new_image else: new_size = (im_padded.size[1], im_padded.size[1]) new_image = Image.new(im_padded.mode, new_size, background_color) new_image.paste(im_padded, ((new_size[0] - im_padded.size[0]) // 2, 0)) return new_image def pil_to_tensor(image: Image.Image) -> tuple[torch.Tensor, torch.Tensor]: output_images = [] output_masks = [] for i in ImageSequence.Iterator(image): i = ImageOps.exif_transpose(i) if i.mode == "I": i = i.point(lambda i: i * (1 / 255)) image = i.convert("RGB") image = np.array(image).astype(np.float32) / 255.0 image = torch.from_numpy(image)[None,] if "A" in i.getbands(): mask = np.array(i.getchannel("A")).astype(np.float32) / 255.0 mask = 1.0 - torch.from_numpy(mask) else: mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") output_images.append(image) output_masks.append(mask.unsqueeze(0)) if len(output_images) > 1: output_image = torch.cat(output_images, dim=0) output_mask = torch.cat(output_masks, dim=0) else: output_image = output_images[0] output_mask = output_masks[0] return (output_image, output_mask) def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor: if len(im.shape) < 3: im = im[:, :, np.newaxis] # orig_im_size=im.shape[0:2] im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1) im_tensor = F.interpolate( torch.unsqueeze(im_tensor, 0), size=model_input_size, mode="bilinear" ).type(torch.uint8) image = torch.divide(im_tensor, 255.0) image = normalize(image, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) return image def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray: result = torch.squeeze(F.interpolate(result, size=im_size, mode="bilinear"), 0) ma = torch.max(result) mi = torch.min(result) result = (result - mi) / (ma - mi) im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8) im_array = np.squeeze(im_array) return im_array def downloadModels(): MODEL_PATH = snapshot_download( repo_id="RunDiffusion/Juggernaut-XL-v6", allow_patterns="*.safetensors" ) LAYERS_PATH = snapshot_download( repo_id="LayerDiffusion/layerdiffusion-v1", allow_patterns="*.safetensors" ) for file in Path(LAYERS_PATH).glob("*.safetensors"): target_path = Path(f"./ComfyUI/models/layer_model/{file.name}") if not target_path.exists(): os.symlink(file, target_path) for model in Path(MODEL_PATH).glob("*.safetensors"): model_target_path = Path(f"./ComfyUI/models/checkpoints/{model.name}") if not model_target_path.exists(): os.symlink(model, model_target_path) examples = [ [ "A very cute monster cat on a glass bottle", "ugly distorted image, low quality, text, bad, not good ,watermark", None, False, None, 1231231, 5, ], [ "A picture from above captures a beautiful, small toucan bird flying in the sky.", "ugly distorted image, low quality, text, bad, not good ,watermark", "./examples/bg.png", False, "SDXL, Background", 1234144, 8, ], [ "a photo a men surrounded by a crowd of people in a circle", "ugly distorted image, low quality, text, bad, not good ,watermark", "./examples/lecun.png", True, "SDXL, Foreground", 123123, 10, ], [ "An image of a galaxy", "ugly distorted image, low quality, text, bad, not good ,watermark", "./examples/julien.png", True, "SDXL, Foreground", 123123, 10, ], [ "a men jumping on swiming pool full of people", "ugly distorted image, low quality, text, bad, not good ,watermark", "./examples/old_jump.png", False, "SDXL, Foreground", 5350795678007195000, 10, ], [ "a cute cat flying over Manhattan time square", "ugly distorted image, low quality, text, bad, not good ,watermark", "./examples/cat.png", True, "SDXL, Foreground", 123123, 10, ], ]