import torch import torch.nn as nn from torchvision.transforms import ToTensor, ToPILImage from PIL import Image class SobelOperator(nn.Module): SOBEL_KERNEL_X = torch.tensor( [[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]] ) SOBEL_KERNEL_Y = torch.tensor( [[-1.0, -2.0, -1.0], [0.0, 0.0, 0.0], [1.0, 2.0, 1.0]] ) def __init__(self, device="cuda"): super(SobelOperator, self).__init__() self.device = device self.edge_conv_x = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to( self.device ) self.edge_conv_y = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to( self.device ) self.edge_conv_x.weight = nn.Parameter( self.SOBEL_KERNEL_X.view((1, 1, 3, 3)).to(self.device) ) self.edge_conv_y.weight = nn.Parameter( self.SOBEL_KERNEL_Y.view((1, 1, 3, 3)).to(self.device) ) @torch.no_grad() def forward( self, image: Image.Image, low_threshold: float, high_threshold: float, output_type="pil", ) -> Image.Image | torch.Tensor | tuple[Image.Image, torch.Tensor]: # Convert PIL image to PyTorch tensor image_gray = image.convert("L") image_tensor = ToTensor()(image_gray).unsqueeze(0).to(self.device) # Compute gradients edge_x = self.edge_conv_x(image_tensor) edge_y = self.edge_conv_y(image_tensor) edge = torch.sqrt(torch.square(edge_x) + torch.square(edge_y)) # Apply thresholding edge.div_(edge.max()) # Normalize to 0-1 (in-place operation) edge[edge >= high_threshold] = 1.0 edge[edge <= low_threshold] = 0.0 # Convert the result back to a PIL image if output_type == "pil": return ToPILImage()(edge.squeeze(0).cpu()) elif output_type == "tensor": return edge elif output_type == "pil,tensor": return ToPILImage()(edge.squeeze(0).cpu()), edge class ScharrOperator(nn.Module): SCHARR_KERNEL_X = torch.tensor( [[-3.0, 0.0, 3.0], [-10.0, 0.0, 10.0], [-3.0, 0.0, 3.0]] ) SCHARR_KERNEL_Y = torch.tensor( [[-3.0, -10.0, -3.0], [0.0, 0.0, 0.0], [3.0, 10.0, 3.0]] ) def __init__(self, device="cuda"): super(ScharrOperator, self).__init__() self.device = device self.edge_conv_x = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to( self.device ) self.edge_conv_y = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to( self.device ) self.edge_conv_x.weight = nn.Parameter( self.SCHARR_KERNEL_X.view((1, 1, 3, 3)).to(self.device) ) self.edge_conv_y.weight = nn.Parameter( self.SCHARR_KERNEL_Y.view((1, 1, 3, 3)).to(self.device) ) @torch.no_grad() def forward( self, image: Image.Image, low_threshold: float, high_threshold: float, output_type="pil", invert: bool = False, ) -> Image.Image | torch.Tensor | tuple[Image.Image, torch.Tensor]: # Convert PIL image to PyTorch tensor image_gray = image.convert("L") image_tensor = ToTensor()(image_gray).unsqueeze(0).to(self.device) # Compute gradients edge_x = self.edge_conv_x(image_tensor) edge_y = self.edge_conv_y(image_tensor) edge = torch.abs(edge_x) + torch.abs(edge_y) # Apply thresholding edge.div_(edge.max()) # Normalize to 0-1 (in-place operation) edge[edge >= high_threshold] = 1.0 edge[edge <= low_threshold] = 0.0 if invert: edge = 1 - edge # Convert the result back to a PIL image if output_type == "pil": return ToPILImage()(edge.squeeze(0).cpu()) elif output_type == "tensor": return edge elif output_type == "pil,tensor": return ToPILImage()(edge.squeeze(0).cpu()), edge