import gradio as gr from gradio_imageslider import ImageSlider import torch from diffusers import DiffusionPipeline, AutoencoderKL from PIL import Image from torchvision import transforms import tempfile import os import time import uuid LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1" device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype) pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", custom_pipeline="pipeline_demofusion_sdxl.py", custom_revision="main", torch_dtype=dtype, variant="fp16", use_safetensors=True, vae=vae, ) pipe = pipe.to(device) def load_and_process_image(pil_image): transform = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ] ) image = transform(pil_image) image = image.unsqueeze(0).half() return image def pad_image(image): w, h = image.size if w == h: return image elif w > h: new_image = Image.new(image.mode, (w, w), (0, 0, 0)) pad_w = 0 pad_h = (w - h) // 2 new_image.paste(image, (0, pad_h)) return new_image else: new_image = Image.new(image.mode, (h, h), (0, 0, 0)) pad_w = (h - w) // 2 pad_h = 0 new_image.paste(image, (pad_w, 0)) return new_image def predict( input_image, prompt, negative_prompt, seed, scale=2, progress=gr.Progress(track_tqdm=True), ): if input_image is None: raise gr.Error("Please upload an image.") padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB") image_lr = load_and_process_image(padded_image).to(device) generator = torch.manual_seed(seed) last_time = time.time() images = pipe( prompt, negative_prompt=negative_prompt, image_lr=image_lr, width=1024 * scale, height=1024 * scale, view_batch_size=16, stride=64, generator=generator, num_inference_steps=25, guidance_scale=7.5, cosine_scale_1=3, cosine_scale_2=1, cosine_scale_3=1, sigma=0.8, multi_decoder=True, show_image=False, lowvram=LOW_MEMORY, ) print(f"Time taken: {time.time() - last_time}") images_path = tempfile.mkdtemp() paths = [] uuid_name = uuid.uuid4() for i, img in enumerate(images): img.save(images_path + f"/img_{uuid_name}_{img.size[0]}.jpg") paths.append(images_path + f"/img_{uuid_name}_{img.size[0]}.jpg") return (images[0], images[-1]), paths css = """ #intro{ max-width: 100%; text-align: center; margin: 0 auto; } """ with gr.Blocks(css=css) as demo: gr.Markdown( """# Super Resolution - SDXL ## [DemoFusion](https://github.com/PRIS-CV/DemoFusion)""", elem_id="intro", ) with gr.Row(): with gr.Column(scale=1): image_input = gr.Image(type="pil", label="Input Image") prompt = gr.Textbox( label="Prompt", info="The prompt is very important to get the desired results. Please try to describe the image as best as you can.", ) negative_prompt = gr.Textbox( label="Negative Prompt", value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic", ) scale = gr.Slider(minimum=2, maximum=5, value=2, step=1, label="x Scale") seed = gr.Slider( minimum=0, maximum=2**64 - 1, value=1415926535897932, step=1, label="Seed", randomize=True, ) btn = gr.Button() with gr.Column(scale=2): image_slider = ImageSlider() files = gr.Files() inputs = [image_input, prompt, negative_prompt, seed, scale] outputs = [image_slider, files] btn.click(predict, inputs=inputs, outputs=outputs, concurrency_limit=1) gr.Examples( fn=predict, examples=[ [ "./examples/lara.jpeg", "photography of lara croft 8k high definition award winning", "blurry, ugly, duplicate, poorly drawn, deformed, mosaic", 1415926535897932, 2, ], [ "./examples/cybetruck.jpeg", "photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future", "blurry, ugly, duplicate, poorly drawn, deformed, mosaic", 1415535897932, 2, ], [ "./examples/jesus.png", "a photorealistic painting of Jesus Christ, 4k high definition", "blurry, ugly, duplicate, poorly drawn, deformed, mosaic", 1415535897932, 2, ], ], inputs=inputs, outputs=outputs, cache_examples=True, ) demo.queue(api_open=False) demo.launch(show_api=False)